Observation of Crack Initiation Direction around Inclusions in SUJ2 under Single-Ball Rolling Contact Fatigue

Article Preview

Abstract:

A newly developed single-ball RCF testing machine was used in order to investigate crack initiation direction within SUJ2. From empirical data, it was found that the distribution of crack initiation direction at N = 1.0x106 cycles is very close to that at N = 1.0x107. This means that the cracks that do not cause failure stop growing by 1.0x106 cycles. Some cracks however continue to grow towards the surface, at an angle of 135 degrees.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

342-346

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Lundberg and A. Palmgren: Dynamic Capacity of Roller Bearings (1947).

Google Scholar

[2] D. Nélias, M. L. Dumont, F. Champiot, A. Vincent, D. Girodin, R. Fougeres and L. Flamand: Journal of Tribology, Vol. 121, No. 2, (1999), pp.240-251.

DOI: 10.1115/1.2833927

Google Scholar

[3] J. Rozwadowska, K. Kida, E. C. Santos, T. Honda, K. Kanemasu and K. Hashimoto: Advanced Materials Research, Vols. 418-420, (2011), pp.1613-1617.

DOI: 10.4028/www.scientific.net/amr.418-420.1613

Google Scholar

[4] S. Hazeyama, J. Rozwadowska, K. Kida, E. C. Santos, T. Honda, K. Kanemasu and T. Shibukawa: Advanced Materials Research, Vol. 566, (2012), pp.182-186.

DOI: 10.4028/www.scientific.net/amr.566.182

Google Scholar

[5] K. L. Johnson: Contact Mechanics (Cambridge University Press, England 1985).

Google Scholar

[6] A. Sackfield and D. A. Hills: The Journal of Strain Analysis for Engineering Design, Vol. 18, No. 2, (1983), pp.101-105.

Google Scholar

[7] K. Kida: Heat Treatment (in Japanese), Vol. 48, No. 2, (2008), pp.79-87.

Google Scholar

[8] K. Hashimoto, K. Hiraoka, K. Kida and E. C. Santos: Materials Science and Technology, Vol. 28, (2012), No. 1, pp.39-43.

Google Scholar

[9] M. Koga, E. C. Santos, T. Honda, K. Kida and T. Shibukawa: Advanced Materials Research, Vols. 457-458, (2012), pp.504-510.

DOI: 10.4028/www.scientific.net/amr.457-458.504

Google Scholar

[10] K. Mizobe, E. C. Santos, T. Honda, H. Koike, K. Kida, and T. Shibukawa: Advanced Materials Research, Vols. 457-458, (2012), pp.1025-1031.

DOI: 10.4028/www.scientific.net/amr.457-458.1025

Google Scholar

[11] K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida and E.C. Santos: Materials and Design, Vol. 32, (2011), No. 3, pp.1605-1622.

DOI: 10.1016/j.matdes.2010.08.052

Google Scholar

[12] K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida and E.C. Santos: Materials and Design, Vol. 32, (2011), No. 10, pp.4980-4985.

DOI: 10.1016/j.matdes.2011.06.056

Google Scholar

[13] E.C. Santos, K. Kida, T. Honda, J. Rozwadowska, K. Houri and K. Hashimoto: Advanced Materials Research, Vols. 217-218, (2011), pp.982-987.

DOI: 10.4028/www.scientific.net/amr.217-218.982

Google Scholar

[14] H. Koike, E.C. Santos, K. Kida, J. Rozwadowska and T. Honda: Advanced Materials Research, Vols. 217-218, (2011), pp.1266-1271.

DOI: 10.4028/www.scientific.net/amr.217-218.1266

Google Scholar

[15] E.C. Santos, T. Honda and K. Kida: Proceedings of SPIE-The International Society for Optical, 7522, SPIE 7522-333, (2009).

Google Scholar

[16] K. Kida, K. Yoshidome, K. Yamakawa, H. Harada and N. Oguma: Int. J. Fatigue & Fracture of Engineering Materials & Structures, Vol. 29, No. 12, (2006), pp.1021-1030.

DOI: 10.1111/j.1460-2695.2006.01067.x

Google Scholar

[17] K. Kida, T. Yamazaki, M. Shibata, N. Oguma and H. Harada: Fatigue & Fracture of Engineering Materials & Structures, Vol. 27, No. 6, (2004), pp.481-493.

DOI: 10.1111/j.1460-2695.2004.00771.x

Google Scholar