Nd 3+ Substituted Nanocrystalline Zinc Ferrite Sensors for Ethanol, LPG and Chlorine

Article Preview

Abstract:

Nd 3+ substituted zinc ferrites with chemical formula ZnNdxFe 2-x O4 (x = 0, 0.01, 0.02, and 0.03) were prepared by oxalate co-precipitation method and characterized by XRD, IR and SEM techniques. The gas sensing properties were studied for ethanol, LPG and chlorine. It was observed that nanocrystalline ZnFe2O4 shows maximum sensitivity to ethanol (~41%) followed by LPG (~22%) and less sensitivity to Cl2 (~10%) at an operating temperature of 327oC. The sensitivity of zinc ferrites increases with increase in Nd 3+ content. Response-recovery times of zinc ferrite decreases with increase in Nd3+ content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-153

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Satyendra Singh, B.C. Yadav , Rajiv Prakash, Bharat Bajaj and Jae Rock lee, App. Surface Sci., Vol. 257 (2011), p.10763.

Google Scholar

[2] N. S. Chen, X. J. Yang, E. S. Liu, J. L. Huang, Sens. Actu. B, Chem., Vol. 66 (2000), p.178.

Google Scholar

[3] K. Mukherjee, S.B. Majumder, Talanta, Vol. 81 (2010), p.1826.

Google Scholar

[4] S.M. Busurin, P.A. Tsygankov, M.L. Busurina, I.D. Kovalev, O.D. Boyarchenko, N.V. Sachkova, A.E. Sychev, Doklady Akademii Nauk, Vol. 444 (2012), p.396.

DOI: 10.1134/s0012501612060012

Google Scholar

[5] L. Yan-Li, H. Wang, Y. Yang, L. Zhi-Min., Y. Hai-Feng, S. Guo-Li, Y. Ru-Qin, Sens. Actu. B, Vol. 102 (2004), p.148.

Google Scholar

[6] N. S. Chen, X. J. Yang, E. S. Liu, J. L. Huang, Sen. Actu. B: Chem., Vol. 66 (2000), p.178.

Google Scholar

[7] Zhenmin Li, Xiaoyong Lai, Hong Wang, Dan Mao, Chaojian Xing, Dan Wang, J. Phys. Chem. C, Vol. 113 (2009),p.2792.

Google Scholar

[8] Anjali Kumari, Nancy Goenka and Rakesh Kumar Singh, Physics Explore, Vol. II (2010), p.19.

Google Scholar

[9] T. J. Shinde, A. B. Gadkari, P. N. Vasambekar, J. Mater. Sci. Mater. Elec., Vol. 21(2010)p.120

Google Scholar

[10] T. J. Shinde, A. B. Gadkari, P. N. Vasambekar, J. Magn. Magn. Mater. Vol. 322 (2010), p.2777

Google Scholar

[11] A. B. Gadkari, T. J. Shinde, P. N. Vasambekar, Rare Matel, Vol. 29 (2010), p.168.

Google Scholar

[12] C. V. Gopal Reddy, S. V. Manorama, V. J. Rao, Sen. Actu. B: Chem.,Vol. 55 (1999), p.90

Google Scholar

[13] T. G. Nenov and S. P. Yordanov, "Ceramic Sensors: Technology and Applications", Technomic Pub. Lancaster, Vol. 134-145 (1996) p.20.

Google Scholar

[14] N. Rezlescu, E. Rezlescu, F. Tudorache, P. D. Popa, Roma. Rep. Phy., Vol. 61,(2009), p.223.

Google Scholar

[15] X. Chu, X. Liu, G. Meng, Sen. Actu. B: Chem., Vol. 55 (1999), p.19.

Google Scholar

[16] K. Arshak, I. Gaidan, Mater. Sci. Eng, B, Vol. 118 (2005), p.44.

Google Scholar