Wide Spectrum Inhibitory Effect Study of Two Botanical Antimicrobials to Soil and Air Microbes

Article Preview

Abstract:

Two botanical antimicrobials: matrine and pyrethrin were used to study their wide spectrum inhibitory effect on microbes from air and soil, to compare their properties as effective inoculant additive. The result indicates that both the two antimicrobials have inhibited microbe number significantly as the increase of concentration contents, but stimulated microbe diameter. Matrine and pyrethrin have shown their superiority in inhibiting actinomycetes (completely inhibition concentration: 400 mg L-1 for air-oriented and 700mg L-1 for soil-oriented) and mould (completely inhibition concentration: 1000 mg L-1 for air-oriented and 1500mg L-1 for soil-oriented) growth, respectively, and could be chosen to conduct inhibition based on the specific situation of microbial inoculants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-176

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Chen, The combined use of chemical and organic fertilizer and/or bio-fertilizer for crop growth and soil fertility, International workshop on sustained management of the soil-Rhizophere system for efficient crop production and fertilizer use, 2006.

DOI: 10.1007/978-94-011-3224-4_12

Google Scholar

[2] G. Jung, J. Mugnier, H.G. Diem, Y.R. Dommergues, Polymer-entrapped Rhizobium as an inoculant for legumes, Plant Soil. 65 (1982) 219-231.

DOI: 10.1007/bf02374652

Google Scholar

[3] A. Sessitsch, P.K. Jjempa, G. Hardarson, A.D.L. Akkermans, K.J. Wilson, Measurement of the competitive index of Rhizobium Tropici strain CIAT899 derivatives marked with the GusA gene, Soil Biochem. 39 (1998) 1099-1110.

DOI: 10.1016/s0038-0717(97)00002-3

Google Scholar

[4] J. Blazquez, Hypermutation as a factor contributing to the acquisition of antimicrobial resistance, Clin. Infect. Dis. 37 (2003) 1201-1209.

DOI: 10.1086/378810

Google Scholar

[5] A. Couce, J. Blazquez, Side effects of antibiotics on genetic variability, FEMS microbial Rev. 33 (2009) 531-538.

DOI: 10.1111/j.1574-6976.2009.00165.x

Google Scholar

[6] B.F. Brehm-Stecher, E.A. Johnson, Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone, Antimicrob. Agents. Ch. 47 (2003) 2257-3360.

DOI: 10.1128/aac.47.10.3357-3360.2003

Google Scholar

[7] E. Rossland, T. Langsrud, T. Sorhaug, Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk, Int. J. Food Microbiol. 103 (2005) 69-77.

DOI: 10.1016/j.ijfoodmicro.2004.11.027

Google Scholar

[8] R. Paduch, G. Matysik, M. Wojciak-Kosior, M. Kandefer-Szerszen, A. Skalska- Kaminska, M. Nowak-Kryska, P. Niedziela, Lamium Album extracts express free radical scavenging and cytotoxic activities, Pol. J. Environ. Stud. 17 (2008) 569-580.

Google Scholar

[9] Y. Lu, Y.P. Zhao, Z.C. Wang, S.Y. Chen, C.X. Fu, Composition and antimicrobial activity of the essential oil of Actinidia macrosperma from China, Nat. Prod. Res. 21 (2007) 227-233.

DOI: 10.1080/14786410601132311

Google Scholar

[10] K. Lewis, F.M. Ausubel, Prospects for plant-derived antibacterials, Nat. Biotechnol. 24 (2006) 1504-1507.

DOI: 10.1038/nbt1206-1504

Google Scholar

[11] H.O. Edeoga, D.E. Okwu, B.O. Mbaebie, Phytochmical constituents of some Nigerian medicinal plants, Afr. J. Biotechnol. 4 (2005) 685-688.

DOI: 10.5897/ajb2005.000-3127

Google Scholar

[12] R. Nawrot, K. Lesniewicz, J. Pienkowska, A, Gozdzicka-Jozefiak, A novel extracellular peroxidase and nucleases from a milky sap of Chelidonium majus, Fitoterapia. 78(2007) 496-501.

DOI: 10.1016/j.fitote.2007.04.012

Google Scholar

[13] P.E. Olsen, W.A. Rice, M.M. Collins, Biological contaminants in north American legume inoculants, Soil Biol. Biochem. 27 (1994) 699-701.

DOI: 10.1016/0038-0717(95)98650-d

Google Scholar

[14] M. Li, M. Alexander, Co-inoculation with antibiotic producing bacteria to increase colonization and nodulation by rhizobia, Plant Soil. 108 (1988) 211-219.

DOI: 10.1007/bf02375651

Google Scholar

[15] B.Y. Wei, L.Z. He, S.Q. Gong, J.L. Li, A new method to selecting dye- decolorizing bacteria-decolorizing circle, Hunan Agri. Sci. 1 (2010) 10-12. (in Chinese)

Google Scholar

[16] X.Y. Yang, B.G. Zhao, Y.W. Ju, Antifungal activities and synergetic tests of matrine and oxymatrine to some tree pathogens, J. Nanjing Forestry University, 32 (2008) 70-82. (in Chinese)

Google Scholar

[17] A.J. Zhang, C.F. Zhang, X.Q. Wang, F.Q. Yang, J. Chen, T. Li, In vitro inhibitory effect of matrine and oxymatrine, J. Ningxia Medical University, 33 (2011) 855-856.

Google Scholar

[18] X.H. Yi, Z.H. Wang, L.F. Hu, X.M. Liu, J.T. Feng, X. Zhang, Isolation of endophytic fungal in Pyrehtrum cineraria folium Trev. and the screening of their antifungal activity, Acta Bot. Boreal- Occident. Sin. 28 (2008) 0317-0323.

Google Scholar