Electrochemical Aptasensor for Label-Free Detection of Protein Based on Gold Nanoparticle Involved Self-Assembly

Article Preview

Abstract:

A label-free electrochemical biosensing strategy based on gold nanoparticle involved layer-by-layer self assembly for the detection of protein is proposed using platelet derived growth factor-BB dimer (PDGF-BB) as the model analyte. Utilizing the strong sulfur-Au affinity, ethanthiol and capture probe modified gold nanoparticles are self-assembled onto the surface of gold electrode successively. The aptamer probe for target protein hybridizes with the capture probe and the biosensor is fabricated. By measuring ac current voltammetry, the target protein can be sensitively detected in a linear dynamic range from 1-1000 ng/mL with a low detection limit of 0.5 ng/mL. Making use of self-assembled gold nanoparticles layer, a large amount of capture probes can be modified onto the gold electrode, supporting the high sensitivity of the proposed strategy. In addition, good reproducibility, high selectivity and stability are achieved. In particular, the biosensor can be easily regenerated by melting in hot water, making it reusable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.S. Wilson, Y. Hu, Enzyme-based biosensors for in vivo measurements, Chem. Rev. 100 (2000) 2693-2704.

DOI: 10.1021/cr990003y

Google Scholar

[2] P.E. Andreotti, G.V. Ludwig, A.H. Peruski, J.J. Tuite, S.S. Morse, L.F. Peruski, Immunoassay of infectious agents, Biotechniques 35 (2003) 850-859.

DOI: 10.2144/03354ss02

Google Scholar

[3] A. Clerico, S. Del Ry, D. Giannessi, Measurement of cardiac natriuretic hormones in clinical practice: the need for a new generation of immunoassay methods, Clin. Chem. 46 (2000) 1529-1534.

DOI: 10.1093/clinchem/46.10.1529

Google Scholar

[4] R. Nutiu and Y. Li, Structure-switching signaling aptamers, J. Am. Chem. Soc. 125 (2003) 4771-4778.

DOI: 10.1021/ja028962o

Google Scholar

[5] W. Zhao, W. Chiuman, J.C.F. Lam, S.A. McMans, W. Chen, Y. Cui, R. Pelton, M.A. Brook, Y. Li, DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors, J. Am. Chem. Soc. 130 (2008) 3610-3618.

DOI: 10.1021/ja710241b

Google Scholar

[6] R. Nutiu and Y. Li, Structure-switching signaling aptamers: Transducing molecular recognition into fluorescence signaling, Chem. Eur. J. 10 (2004) 1868-1876.

DOI: 10.1002/chem.200305470

Google Scholar

[7] M.N. Stojanovic, P. de Prada, D.W. Landry, Fluorescent sensors based on aptamer self-assembly, J. Am. Chem. Soc. 122 (2000) 11547-11548.

DOI: 10.1021/ja0022223

Google Scholar

[8] Z.S. Wu, M.M. Guo, S.B. Zhang, C.R. Chen, J.H. Jiang, G.L. Shen, R.Q. Yu, Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers, Anal. Chem. 79 (2007) 2933-2939.

DOI: 10.1021/ac0622936

Google Scholar

[9] J.W. Liu and Y. Lu, Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles, Angew Chem. Int. Ed. 45 (2006) 90-94.

DOI: 10.1002/anie.200502589

Google Scholar

[10] J. Chen, J.H. Tang, F. Yan, H.X. Ju, A gold nanoparticles/sol-gel composite architecutre for encapsulation of immunoconjugate for reagentless electrochemical immunoassay, Biomaterials 27 (2006) 2313-2321.

DOI: 10.1016/j.biomaterials.2005.11.004

Google Scholar

[11] N. Li, R. Yuan, Y.Q. Chai, S.H. Chen, H.Z. An, W.J. Li, New antibody immobilization strategy based on gold nanoparticles and azure I/mutil-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor, J. Phys. Chem. C 111 (2007) 8443 -8450.

DOI: 10.1021/jp068610u

Google Scholar

[12] M. Suzuki, Y. Nakashima, Y. Mori, SPR immunosnsor integrated two miniature enzyme sensors, Sens. Actuators B 54 (1999) 176-181.

DOI: 10.1016/s0925-4005(98)00335-9

Google Scholar

[13] M.F. Huang, Y.C. Kuo, C.C. Huang, H.T. Chang, Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis, Anal. Chem. 76 (2004) 192-196.

DOI: 10.1021/ac034908u

Google Scholar