Annealing Time Dependence on the Phase Equilibria and Thermoelectric Property of Type-I Ba8Cu6Ag2Si38 Clathrate

Article Preview

Abstract:

Poly-crystalline Ba8Cu6Ag2Si38 clathrates were synthesized by the arc-melting method and a subsequent annealing treatment. The main phase of all the samples was type-I clathrate. However, there were some precipitates which rich in Cu, Ag or Si in the grain boundary of the as-synthesized sample and the precipitates gradually reduced with the increase of annealing time. The transition metal content in the clathrate increased with the annealing time because of the diffusion of the Cu and Ag atoms from precipitates phase into clathrates phase. The as-synthesized sample was n-type material. For the 576 hours annealed sample, the carrier type changed from n-type to p-type because of the increase of Cu and Ag content in the clathrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-62

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. J. Disalvo, Thermoelectric cooling and power generation, Science 285 (1999) 703-706.

DOI: 10.1126/science.285.5428.703

Google Scholar

[2] G. Mahan, B. Sales, J. Sharp, Thermoelectric materials: new approaches to an old problem, Phys. Today. 50 (1997) 42-47.

DOI: 10.1063/1.881752

Google Scholar

[3] C. Wood, Materials for thermoelectric energy conversion, Rep. Prog. Phys. 51 (1988) 459-539.

Google Scholar

[4] A. Bentien, B.B. Iversen, J.D. Bryan, G.D. Stucky, A.E.C. Palmqvist, A.J. Schultz, R.W. Henning, Maximum entropy method analysis of thermal motion and disorder in thermoelectric clathrate Ba8Ga16Si30, J. Appl. Phys. 91 (2002) 5694-5699

DOI: 10.1063/1.1466531

Google Scholar

[5] D. Huo, T. Sakata, T. Sasakawa, M.A. Avila, M. Tsubota, F. Iga, H. Fukuoka, S. Yamanaka, S Aoyagi, T. Takabatake, Structural, transport, and thermal properties of the single-crystalline type-VIII clathrate Ba8Ga16Sn30, Phys. Rev. B 71 (2005) 075113-1-6

DOI: 10.1103/physrevb.71.075113

Google Scholar

[6] G.S. Nolas, J.L. Cohn, G.A. Slack, S.B. Schujman, Semiconducting Ge clathrates: Promising candidates for thermoelectric applications, Appl. Phys. Lett. 73 (1998) 178-180

DOI: 10.1063/1.121747

Google Scholar

[7] J.L. Cohn, G.S. Nolas, V.Fessatidis, T.H. Metcalf, G.A. Slack, Glasslike heat conduction in high-mobility crystalline semiconductors, Phys. Rev. Lett. 82 (1999) 779-782

DOI: 10.1103/physrevlett.82.779

Google Scholar

[8] S. Leoni, W. Carrillo-Cabrera, Y. Grin, Modelling of the alpha (clathrate VIII) reversible arrow beta (clathrate I) phase transition in Eu8Ga16Ge30, J. Alloys Compd. 350 (2003) 113-122

DOI: 10.1016/s0925-8388(02)00932-5

Google Scholar

[9] R.F.W. Hermann, K. Tanigaki, T. Kawaguchi, S. Kuroshima, O. Zhou, Electronic structure of Si and Ge gold-doped clathrates, Phys. Rev. B 60 (1999) 13245-13248

DOI: 10.1103/physrevb.60.13245

Google Scholar

[10] J. Simon, B. Anders, K.H.M. Georg, B.B. Iversen, Crystal structure, band structure, and physical properties of Ba8Cu6-xGe40+x (0≤x≤0.7), Chem. Mater. 18 (2006) 4633-4642

Google Scholar

[11] N. Mugita, Y. Nakakohara, R. Teranishi, S. Munetoh, Single crystallization of Ba8AlxSi46-x clathrate for improvement of thermoelectric properties, J. Matt. Res 26 (2002) 1857-1860

DOI: 10.1557/jmr.2011.193

Google Scholar

[12] X. Yan, G. Giester, E. Bauer, P. Rogl, S. Paschen, Ba-Cu-Si Clathrates: Phase Equilibria and Crystal Chemistry, J. Electron. Mater. 39 (2010) 1634-1639

DOI: 10.1007/s11664-010-1253-x

Google Scholar

[13] X. Yan, M. X. Chen, S. Laumann, E. Bauer, P. Rogl, R. Podloucky, S. Paschen1, Thermoelectric properties of Ba-Cu-Si clathrates, Phys. Rev. B 85 (2012) 165127-1-10

DOI: 10.1103/physrevb.85.165127

Google Scholar

[14] I. Zeiringer, E. Bauer1, A. Grytsiv, P. Rogl, H. Effenberger, Phase equilibria, crystal chemistry, and physical properties of Ag-Ba-Si clathrates, Jap. J. Appl. Phys. Vol. 50 (2011), p. 05FA01-1-4

DOI: 10.7567/jjap.50.05fa01

Google Scholar