In Situ TiB2 and Al2(Y, Gd) Particles Reinforced Magnesium Matrix Composite with Al-Ti-B Addition

Article Preview

Abstract:

In-situ micro/nanosized TiB2 and Al2(Y, Gd) particles reinforced magnesium matrix composite was successfully fabricated by addition of Al-Ti-B preform into Mg-Gd-Y-Zn matrix alloy, its microstructures and properties were investigated. The results show that the introduction of Al-Ti-B preform causes the precipitation of Al2(Y, Gd) particles and the SHS synthesis of TiB2 particles which significantly refine solidification structure. The reinforced Al2(Y, Gd) particles with average sizes of 5-8 μm are uniformly distributed throughout the magnesium matrix, and have a good bond to the matrix. Tensile tests indicate that, compared with the former matrix alloy, mechanical properties of the multiple in-situ particles reinforced composite are improved all-roundly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

315-318

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Liu, J.H. Zhang, H.Y. Lu, D.X. Tang, L.L. Rokhlin, F.M. Elkin and J. Meng: Materials & Design Vol. 31 (2010), p.210

Google Scholar

[2] S. Schumann and H. Friedrich: Materials Science Forum Vol. 419-422 (2003), p.51

Google Scholar

[3] P. Abachi, A. Masoudi and K. Purazrang: Materials Science and Engineering A Vol. 435-436 (2006), p.653

Google Scholar

[4] G. Garcés, P. Pérez and P. Adeva : Scripta Materialia Vol. 52 (2005), p.615

Google Scholar

[5] H.Y. Wang, Q.C. Jiang, Y.Q. Zhao, F. Zhao, B.X. Ma and Y. Wang: Materials Science and Engineering A Vol. 372 (2004), p.109

Google Scholar

[6] Y. Wang, H.Y. Wang, K. Xiu, H.Y. Wang and Q.C. Jiang: Materials Letters Vol. 60 (2006), p.1533

Google Scholar

[7] Y. Wang, H.Y. Wang, Y. F. Yang and Q.C. Jiang: Materials Science and Engineering A Vol. 478 (2008), p.9

Google Scholar

[8] Q.B. Nguyen and M. Gupta: Materials Science and Engineering A Vol.527 (2010), p.1411

Google Scholar

[9] M. Emamy, A. Razaghian, H.R. Lashgari and R. Abbasi: Materials Science and Engineering A Vol. 485 (2008), p.210

Google Scholar

[10] C.S. Goh, J. Wei, L.C. Lee and M. Gupta: Acta Materials Vol. 55 (2007), p.5115

Google Scholar

[11] S.F. Liu, Y. Zhang, H. Han and B. Li: Journal of Alloys and Compounds Vol.487 (2009), p.202

Google Scholar

[12] X.Q. Zhang, H.W. Wang, L.H. Liao, X.Y. Teng and N.H. Ma: Materials Letters Vol. 59 (2005), p.2105

Google Scholar

[13] S.J. Wang, G.Q. Wu, R.H. Li, G.X. Luo and Z. Huang: Materials Letters Vol. 60 (2006), p.1863

Google Scholar

[14] G.Q. Wu, Z.H. Ling, X. Zhang, S.J. Wang, T. Zhang and Z. Huang: Journal of Alloys and Compounds Vol. 507 (2010), p.137

Google Scholar

[15] K. Liu, J.H. Zhang, G.H. Su, D.X. Tang, L.L. Rokhlin, F.M. Elkin and J. Meng: Journal of Alloys and Compounds Vol. 481 (2009), p.811

Google Scholar

[16] T. Itoi, T. Seimiya, Y. Kawamura and M. Hirohashi: Scripta Materialia Vol.51 (2004), p.107

DOI: 10.1016/j.scriptamat.2004.04.003

Google Scholar

[17] Y.X. Wang, X.Q. Zeng and W.J. Ding: Scripta Materialia Vol. 54 (2006), p.269

Google Scholar