Preparation and Characterization of Homogeneous Grafted Cellulose in DMAc/LiCl System

Article Preview

Abstract:

The homogeneous grafting of methyl methacrylate (MMA) onto cellulose was carried out by using ammonium persulfate as an initiator. DMAc/LiCl was used as the solvent for the dissolution of cellulose and the media for the homogeneous graft polymerization of MMA onto cellulose. The efficient reaction conditions of the grafting reaction were confirmed by weighing methods. The results showed that the efficient reaction conditions were as follows: reaction time, 2h; mass ratio of MMA/cellulose, 1/1(g/g); mass ratio of initiator/cellulose, 6/50 (g/g); and reaction temperature, 80°C. Under these conditions, the GP of homogeneous grafted cellulose can reach 76%. The grafted polymer was characterized by FTIR, SEM and TG-DTA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

332-336

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jain, V.; Xiao, H.; Ni, Y. (2007). Grafting of poly (methyl acrylate) onto sulfite pulp fibers and its effect on water absorbance. J Appl Polym Sci, 105, 3195.

DOI: 10.1002/app.26229

Google Scholar

[2] Biermann, C. J. (1996).Handbook of Pulping and Papermaking; Academic Press: San Diego.

Google Scholar

[3] Belgacem, M. N.; Gandini, A. (2005). The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interface, 12, 41.

DOI: 10.1163/1568554053542188

Google Scholar

[4] Gosh, P.; Dev, D. (1996). Graft copolymerization of mixtures of acrylamide and methyl methacrylate on dialdehyde cellulose (DAC) from cotton in a limited aqueous system. Eur Polym J, 32, 165.

DOI: 10.1016/0014-3057(95)00130-1

Google Scholar

[5] Okieimen, F. E.; Ogbeifun, D. E. (1996). Graft copolymerizations of modified cellulose: Grafting of methyl acrylate, ethyl acrylate and ethyl methacrylate on carboxy methyl cellulose. Eur Polym J, 32, 311.

DOI: 10.1016/0014-3057(95)00152-2

Google Scholar

[6] Gawish, S. W. A.; Kantouch, A.; El-Nagar, M. A.; Moslen, S. M. (1995). Characterization and thermal stability of cellulose-graft-polyacryloniytrile prepared by using KMnO4/citric acid redox system. J Appl Polym Sci, 57, 45.

DOI: 10.1002/app.31679

Google Scholar

[7] Dessarki, A. M.; Toher, N. H.; El-Arnauty, M. B. (1998). Gamma ray induced graft copolymerization of N-vinylpyrrolidone, acrylamide and their mixtures onto polypropylene films. Polym Int, 45, 67.

DOI: 10.1002/(sici)1097-0126(199801)45:1<67::aid-pi896>3.0.co;2-a

Google Scholar

[8] Gupta, K. C.; Sujata, S. (2000). Grafting of N,N'-methylenebisacrylamide onto cellulose using Co(III)-acetylacetonate complex in aqueous medium. J Appl Polym Sci, 76, 906.

DOI: 10.1002/(sici)1097-4628(20000509)76:6<906::aid-app17>3.0.co;2-4

Google Scholar

[9] Lin, C. X.; Zhan, H. Y.; Liu, M. H.; Fu, S. Y.; Lucia, L. A. (2009). Novel Preparation and Characterization of Cellulose Microparticles Functionalized in Ionic Liquids. Langmuir, 25(17), 10116–10120.

DOI: 10.1021/la9008703

Google Scholar

[10] Potthast, A.; Rosenau, T.;Buchner, R.; Thomas, R.;Gerald, E. (2002). The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose, 9,41–53.

Google Scholar

[11] Lin, D. T.; Cheng, L. P.; Kang, Y. J.; Chen, L. W.; Young, T. H. (1998). Effects of precipitation conditions on the membrane morphology and permeation characteristics. J Membr Sci, 140, 185.

DOI: 10.1016/s0376-7388(97)00281-0

Google Scholar

[12] Sivakumar, M.; Malaisamy, R.; Sajitha, C. J.; Mohan, D.; Mohan,V.; Rangarajan, R. (2000). Preparation and performance of cellulose acetate-polyurethane blend membranes and their applications-II. J Membr Sci, 169, 215.

DOI: 10.1016/s0376-7388(99)00339-7

Google Scholar

[13] Machado, P. S. T.; Habert, A. C.; Borges, C. P. (1999). Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes. J Membr Sci,155, 171.

DOI: 10.1016/s0376-7388(98)00266-x

Google Scholar

[14] Munari, S.; Bottino, A.; Camera Roda, G.; Capannelli, G. (1990). Preparation of ultrafiltration membranes. State of the art. Desalination, 77, 85.

DOI: 10.1016/0011-9164(90)85022-3

Google Scholar

[15] Barth, C.; Goncalves, M. C.; Pires, A. T. N.; Roeder, J.; Wolf, B. A. (2000). Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. J Membr Sci, 169, 287.

DOI: 10.1016/s0376-7388(99)00344-0

Google Scholar