Up-Conversion Mechanisms and Application of Rare Earth-Doped ZnO

Article Preview

Abstract:

Zinc oxide (ZnO) the film is a new type of transparent conductive oxides (TCO) material; it has a green environmental application prospect and hopeful to be substitution of indium tin oxide, so it has been the research focus of TCO materials. The rare earth ion like Yb3+, and Ho3+, Er3+ shall be applied to satisfy the up-conversion function, and rare earth elements doped ZnO transparent conductive films will prepared. The play is to study the mechanism of up-conversion and energy transitions that the rare earth ions in the ZnO transparent conductive film. Through the theoretical analysis with the performance of the zinc oxide thin films explore optimization scheme, and aim to prepare out doped-ZnO and transparent conductive film that have both excellent photoelectric performance and up-conversion function. This new type of ZnO transparent conductive film with up-conversion function, it will have important theoretical significance in production of green environment materials and good application prospect in the field of sole cells, photoelectric detection luminescent device and so on.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

373-376

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M J, A M, M I R, et al. Journal of Applied Physics, 2006, 99:113510, 1-5.

Google Scholar

[2] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Bristol, Philadelphia, PA, 1995.

Google Scholar

[3] T. Minami, H. Nanto, S. Shooji, S. Takata, Thin Solid Films 111(1984) 167.

DOI: 10.1016/0040-6090(84)90484-x

Google Scholar

[4] T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24 (1985)L781.

Google Scholar

[5] J. Hu, R.G. Gordon, J. Appl. Phys. 71 (1992) 880.

Google Scholar

[6] T. Minami, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 23 (1984) L280.

Google Scholar

[7] J. Hu, R.G. Gordon, J. Electrochem. Soc. 139 (1992) 2014.

Google Scholar

[8] T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 25 (1986)L776.

Google Scholar

[9] H. Sato, T. Minami, S. Takata, J. Vac. Sci. Technol. A 11 (1993)2975.

Google Scholar

[10] Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, M. Okuda, Jpn. J.Appl. Phys. 35 (1996) L56.

Google Scholar

[11] Suzuki, T. Matsushita, Y. Sakamoto, N. Wada, T. Fukuda, H.Fujiwara, M. Okuda, Jpn. J. Appl. Phys. 35 (1996) L5457.

Google Scholar

[12] Daqin Chen, Yuansheng Wang and Maochun Hong. Nano Energy, 2012, 1(1): 73-90.

Google Scholar

[13] H Q Wang, M Batentschuk, Andres Osvet, Luigi Pinna and Christoph J.Brabec. Advanced Materials, 2011, 23(22-23): 2675-2680.

DOI: 10.1002/adma.201100511

Google Scholar

[14] J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark and R. E. I. Schropp. Energy & Environmental Science, 2011, 4: 4835-4848.

Google Scholar

[15] Yi GS, Chow GM. Chem Mater, 2007, 19(3):341–343.

Google Scholar

[16] J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark and R. E. I. Schropp. Energy Environ. Sci., 2011, 4, 4835–4848 | 4841

DOI: 10.1039/c1ee01659h

Google Scholar

[17] Ronda, Luminescence, Wiley-VCH, 2007, ch 6, p.153.

Google Scholar

[18] M. P. Hehlen, M. L. F. Philips, N. J. Cockroft and H. U. G€udel, Encyclopedia of Materials: Science of Technology, Pergamon, NewYork, 2001, 10, 9458.

Google Scholar

[19] P. Gibart, F. Auzel, J.-C. Guillaume and K. Zahraman, Jpn. J. Appl.Phys., 1996, 35, 4401–4402.

Google Scholar

[20] S. Richards and A. Shalav, IEEE Trans. Electron Devices, 2007, 54, 2679–2684.

Google Scholar

[21] J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark and R. E. I. Schropp, Sol. Energy Mater. Sol. Cells, 2010, 94, 2395–2398.

DOI: 10.1016/j.solmat.2010.08.024

Google Scholar

[22] M. Liu, Y. Lu, Z. B. Xie and G. M. Chow, Sol. Energy Mater. Sol.Cells, 2011, 95, 800–803.

Google Scholar

[23] G.-B. Shan and G. P. Demopoulos, Adv. Mater., 2010, 22, 4373–4377.

Google Scholar

[24] J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark and R. E. I. Schropp, Proceedings of the 25th European Photovoltaic Solar Energy Conference, 2010, p.255–259.

Google Scholar

[25] Shalav, B. S. Richards, T. Trupke, K. W. Kr€amer and H. U. G€udel, Appl. Phys. Lett., 2005, 86, 013505.

Google Scholar

[26] J. de Wild, A. Meijerink, J. K. Rath, W. G. J. H. M. van Sark and R. E. I. Schropp, Sol. Energy Mater. Sol. Cells, 2010, 94, 2395–2398.

DOI: 10.1016/j.solmat.2010.08.024

Google Scholar

[27] M. Liu, Y. Lu, Z. B. Xie and G. M. Chow, Sol. Energy Mater. Sol.Cells, 2011, 95, 800–803.

Google Scholar