Sorption of Tetracycline Antibiotics from Water

Article Preview

Abstract:

Antibiotics are used in large amounts as human and veterinary medicine. Due to their use pattern, they possess a potential for reaching the water environment. In recent years great amount of evidence showed that tetracycline antibiotics were frequently detected in aquatic environment. In this paper, the literature on adsorption of tetracyclines (TCs) were reviewed and summarized. Adsorption kinetics, adsorption isotherm, and adsorption mechanism were discussed. The pseudo-second-order kinetics model fit the experimental data best in most cases of adsorption of TCs. Sorption of TCs followed Freundlich or Langmuir isotherm well in all cases. At last, main adsorption mechanisms such as cation exchange, cation bridging at surfaces, surface complexation, and hydrogen bonding could be suggested based on analysis by XRD, FTIR, NMR, HPLC, LC-MS, etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

641-644

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Gu, and K.G. Karthikeyan, Interaction of Tetracycline with Aluminum and Iron Hydrous Oxides, Environ Sci Technol. 39 (2005) 2660-2667.

DOI: 10.1021/es048603o

Google Scholar

[2] M.E. Lindsey, M. Meyer, and E.M. Thurman, Analysis of Trace Levels of Sulfonamide and Tetracycline Antimicrobials, in Groundwater and Surface Water Using Solid-phase Extraction and Liquid Chromatography/Mass Spectrometry, Anal Chem. 73 (2001) 4640-4646.

DOI: 10.1021/ac010514w

Google Scholar

[3] E.M. Thurman, and K.A. Hostetler, "Analysis of Tetracycline and Sulfamethazine Antibiotics in Ground Water and Animalfeedlot Wastewater by High-performance Liquid Chromatography/Mass Spectrometry using Positive-Ion Electrospray," http://water.usgs.gov/owq/AFO/proceedings/afo/html/thurman.html. 1999.

Google Scholar

[4] M.T. Meyer, J.E. Bumgarner, J.L. Varns, J.V. Daughtridge, E.M. Thurman, and K.A. Hostetler, Use of Radioimmunoassay as a Screen for Antibiotics in Confined Animal Feeding Operations and Confirmation by Liquid Chromatography/Mass Spectrometry, Sci Total Environ. 248 (2000) 181-187.

DOI: 10.1016/s0048-9697(99)00541-0

Google Scholar

[5] W.W. Ben, Z.M. Qiang, C. Adams, H.Q. Zhang, and L.P. Chen, Simultaneous Determination of Sulfonamides, Tetracyclines and Tiamulin in Swine Wastewater by Solid-phase Extraction and Liquid Chromatography-Mass Spectrometry, J Chromatogr A. 1202 (2008) 173-180.

DOI: 10.1016/j.chroma.2008.07.014

Google Scholar

[6] Nier, Development of Analytical Method and Study of Exposure of Pharmaceuticals and Personal Care Products in Environment (Ⅱ), National Institute of Environmental Research, Ministry of Environment, Korea, 2007.

Google Scholar

[7] J.R. Barrett, Airborne Bacteria in CAFOs: Transfer of Resistance from Animals to Humans, Environ Health Perspect. 113 (2005) A116-A117.

DOI: 10.1289/ehp.113-a116b

Google Scholar

[8] S. Kim, J.N. Jensen, D.S. Aga, and A.S. Weber, Tetracycline as a Selector for Resistant Bacteria in Activated Sludge, Chemosphere. 66 (2007) 1643-1651.

DOI: 10.1016/j.chemosphere.2006.07.066

Google Scholar

[9] D. Yu, X. Yi, Y. Ma, B. Yin, H. Zhou, J. Li, and Y. Huang, Effects of Administration Mode of Antibiotics on Antibiotic Resistance of Enterococcus Faecalis in Aquatic: Ecosystems, Chemosphere. 76 (2009) 915-920.

DOI: 10.1016/j.chemosphere.2009.04.057

Google Scholar

[10] Z.H. Li, L. Schulz, C. Ackley, and N. Fenske, Adsorption of Tetracycline on Kaolinite with pH-dependent Surface Charges, J Colloid Interface Sci. 351 (2010) 254-260.

DOI: 10.1016/j.jcis.2010.07.034

Google Scholar

[11] P.H. Chang, Z.H. Li, T.L. Yu, S. Munkhbayer, T.H. Kuo, Y.C. Hung, J.S. Jean, and K.H. Lin, Sorptive Removal of Tetracycline from Water by Palygorskite, J Hazard Mater. 165 (2009) 148-155.

DOI: 10.1016/j.jhazmat.2008.09.113

Google Scholar

[12] Z.H. Li, P.H. Chang, J.S. Jean, W.T. Jiang, and C.J. Wang, Interaction between Tetracycline and Smectite in Aqueous Solution, J Colloid Interface Sci. 341 (2010) 311-319.

DOI: 10.1016/j.jcis.2009.09.054

Google Scholar

[13] Y.P. Zhao, J.J. Geng, X.R. Wang, X.Y. Gu, and S.X. Gao, Adsorption of Tetracycline onto Goethite in the Presence of Metal Cations and Humic Substances, J Colloid Interface Sci. 361 (2011) 247-251.

DOI: 10.1016/j.jcis.2011.05.051

Google Scholar

[14] L.H. Huang, Y.Y. Sun, W.L. Wang, Q.Y. Yue, and T. Yang, Comparative Study on Characterization of Activated Carbons Prepared by Microwave and Conventional Heating Methods and Application in Removal of OTC, Chem. Eng. J. 171 (2011) 1446-1453.

DOI: 10.1016/j.cej.2011.05.041

Google Scholar

[15] J. Kang, H.J. Liu, Y.M. Zheng, J.H. Qu, and J.P. Chen, Application of Nuclear Magnetic Resonance Spectroscopy, Fourier Transform Infrared Spectroscopy, UV–Visible Spectroscopy and Kinetic Modeling for Elucidation of Adsorption Chemistry in Uptake of Tetracycline by Zeolite Beta, J Colloid Interface Sci. 354 (2011) 261-267.

DOI: 10.1016/j.jcis.2010.10.065

Google Scholar

[16] W.R. Chen, and C.H. Huang, Adsorption and Transformation of Tetracycline Antibiotics with Aluminum Oxide, Chemosphere. 79 (2010) 779-785.

DOI: 10.1016/j.chemosphere.2010.03.020

Google Scholar

[17] Y.J. Wang, D.A. Jia, R.J. Sun, H.W. Zhu, and D.M. Zhou, Adsorption and Cosorption of Tetracycline and Copper (II) on Montmorillonite as Affected by Solution pH, Environ Sci Technol. 42 (2008) 3254-3259.

DOI: 10.1021/es702641a

Google Scholar

[18] D. Avisar, O. Primor, I. Gozlan, and H. Mamane, Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay, Water Air Soil Pollut. 209 (2010) 439-450.

DOI: 10.1007/s11270-009-0212-8

Google Scholar

[19] R.A. Figueroa, A. Leonard, and A.A. Mackay, Modeling Tetracycline Antibiotic Sorption to Clays, Environ Sci Technol. 38 (2004) 476-483.

DOI: 10.1021/es0342087

Google Scholar

[20] T. Polubesova, D. Zadaka, L. Groisman, and S. Nir, Water Remediation by Micelle–clay System: Case Study for Tetracycline and Sulfonamide Antibiotics, Water Res. 40, (2006) 2369-2374.

DOI: 10.1016/j.watres.2006.04.008

Google Scholar

[21] P.H. Chang, Z.H. Li, W.T. Jiang, and J.S. Jean, Adsorption and Intercalation of tetracycline by Swelling Clay Minerals, Appl Clay Sci. 46 (2009) 27-36.

DOI: 10.1016/j.clay.2009.07.002

Google Scholar

[22] S.J. Aitcheson, J. Arnett, K.R. Murray, and J. Zhang, Removal of Aquaculture Therapeutants by Carbon Adsorption 1. Equilibrium Adsorption Behaviour of Single Components, Aquaculture. 183 (2000) 269-284.

DOI: 10.1016/s0044-8486(99)00304-x

Google Scholar

[23] L.L. Ji, Y.Q. Wan, S.R. Zheng, and D.Q. Zhu, Adsorption of Tetracycline and Sulfamethoxazole on Crop Residue-Derived Ashes: Implication for the Relative Importance of Black Carbon to Soil Sorption, Environ Sci Technol. 45 (2011) 13, pp.5580-5586.

DOI: 10.1021/es200483b

Google Scholar

[24] B. Chu, K.W. Goyne, S.H. Anderson, C.H. Lin, and R.P. Udawatta, Veterinary antibiotic sorption to agroforestry buffer, grass buffer and cropland soils, Agroforest Syst. 79 (2010) 67-80.

DOI: 10.1007/s10457-009-9273-3

Google Scholar

[25] T.L.T. Laak, W.A. Gebbink, and J. Tolls, The Effect of pH and Ionic Strength on the Sorption of Sulfachloropyridazine, Tylosin, and Oxytetracycline to Soil, Environ Toxic Chem. 25 (2006) 904-911.

DOI: 10.1897/05-232r.1

Google Scholar

[26] S.A. Sassman, and L.S. Lee, Sorption of Three Tetracyclines by Several Soils:  Assessing the Role of pH and Cation Exchange, Environ Sci Technol. 39 (2005) 7452-7459.

DOI: 10.1021/es0480217

Google Scholar

[27] D.A. Jia, D.M. Zhou, Y.J. Wang, H.W. Zhu, and J.L. Chen, Adsorption and Cosorption of Cu (II) and Tetracycline on Two Soils with Different Characteristics, Geoderma. 146 (2008) 224-230.

DOI: 10.1016/j.geoderma.2008.05.023

Google Scholar

[28] A.D. Jones, G.L. Bruland, S.G. Agrawal, and D. Vasudevan, Facrors Influencing the Sorption of Oxytetracycline to Soils, Environ Toxic Chem. 24 (2005) 4, pp.761-770.

DOI: 10.1897/04-037r.1

Google Scholar

[29] M.E. Parolo, M.C. Savini, J.M. Vallés, M.T. Baschini, and M.J. Avena, Tetracycline Adsorption on Montmorillonite: pH and Ionic Strength Effects, Appl Clay Sci. 40 (2008) 179-186.

DOI: 10.1016/j.clay.2007.08.003

Google Scholar

[30] L. Aristilde, C. Marichal, J. Miéhé-Brendlé, B. Lanson, and L. Charlet, Interactions of Oxytetracycline with a Smectite Clay: A Spectroscopic Study with Molecular Simulations, Environ Sci Technol. 44 (2010) 7839-7845.

DOI: 10.1021/es102136y

Google Scholar