[1]
C. Gu, and K.G. Karthikeyan, Interaction of Tetracycline with Aluminum and Iron Hydrous Oxides, Environ Sci Technol. 39 (2005) 2660-2667.
DOI: 10.1021/es048603o
Google Scholar
[2]
M.E. Lindsey, M. Meyer, and E.M. Thurman, Analysis of Trace Levels of Sulfonamide and Tetracycline Antimicrobials, in Groundwater and Surface Water Using Solid-phase Extraction and Liquid Chromatography/Mass Spectrometry, Anal Chem. 73 (2001) 4640-4646.
DOI: 10.1021/ac010514w
Google Scholar
[3]
E.M. Thurman, and K.A. Hostetler, "Analysis of Tetracycline and Sulfamethazine Antibiotics in Ground Water and Animalfeedlot Wastewater by High-performance Liquid Chromatography/Mass Spectrometry using Positive-Ion Electrospray," http://water.usgs.gov/owq/AFO/proceedings/afo/html/thurman.html. 1999.
Google Scholar
[4]
M.T. Meyer, J.E. Bumgarner, J.L. Varns, J.V. Daughtridge, E.M. Thurman, and K.A. Hostetler, Use of Radioimmunoassay as a Screen for Antibiotics in Confined Animal Feeding Operations and Confirmation by Liquid Chromatography/Mass Spectrometry, Sci Total Environ. 248 (2000) 181-187.
DOI: 10.1016/s0048-9697(99)00541-0
Google Scholar
[5]
W.W. Ben, Z.M. Qiang, C. Adams, H.Q. Zhang, and L.P. Chen, Simultaneous Determination of Sulfonamides, Tetracyclines and Tiamulin in Swine Wastewater by Solid-phase Extraction and Liquid Chromatography-Mass Spectrometry, J Chromatogr A. 1202 (2008) 173-180.
DOI: 10.1016/j.chroma.2008.07.014
Google Scholar
[6]
Nier, Development of Analytical Method and Study of Exposure of Pharmaceuticals and Personal Care Products in Environment (Ⅱ), National Institute of Environmental Research, Ministry of Environment, Korea, 2007.
Google Scholar
[7]
J.R. Barrett, Airborne Bacteria in CAFOs: Transfer of Resistance from Animals to Humans, Environ Health Perspect. 113 (2005) A116-A117.
DOI: 10.1289/ehp.113-a116b
Google Scholar
[8]
S. Kim, J.N. Jensen, D.S. Aga, and A.S. Weber, Tetracycline as a Selector for Resistant Bacteria in Activated Sludge, Chemosphere. 66 (2007) 1643-1651.
DOI: 10.1016/j.chemosphere.2006.07.066
Google Scholar
[9]
D. Yu, X. Yi, Y. Ma, B. Yin, H. Zhou, J. Li, and Y. Huang, Effects of Administration Mode of Antibiotics on Antibiotic Resistance of Enterococcus Faecalis in Aquatic: Ecosystems, Chemosphere. 76 (2009) 915-920.
DOI: 10.1016/j.chemosphere.2009.04.057
Google Scholar
[10]
Z.H. Li, L. Schulz, C. Ackley, and N. Fenske, Adsorption of Tetracycline on Kaolinite with pH-dependent Surface Charges, J Colloid Interface Sci. 351 (2010) 254-260.
DOI: 10.1016/j.jcis.2010.07.034
Google Scholar
[11]
P.H. Chang, Z.H. Li, T.L. Yu, S. Munkhbayer, T.H. Kuo, Y.C. Hung, J.S. Jean, and K.H. Lin, Sorptive Removal of Tetracycline from Water by Palygorskite, J Hazard Mater. 165 (2009) 148-155.
DOI: 10.1016/j.jhazmat.2008.09.113
Google Scholar
[12]
Z.H. Li, P.H. Chang, J.S. Jean, W.T. Jiang, and C.J. Wang, Interaction between Tetracycline and Smectite in Aqueous Solution, J Colloid Interface Sci. 341 (2010) 311-319.
DOI: 10.1016/j.jcis.2009.09.054
Google Scholar
[13]
Y.P. Zhao, J.J. Geng, X.R. Wang, X.Y. Gu, and S.X. Gao, Adsorption of Tetracycline onto Goethite in the Presence of Metal Cations and Humic Substances, J Colloid Interface Sci. 361 (2011) 247-251.
DOI: 10.1016/j.jcis.2011.05.051
Google Scholar
[14]
L.H. Huang, Y.Y. Sun, W.L. Wang, Q.Y. Yue, and T. Yang, Comparative Study on Characterization of Activated Carbons Prepared by Microwave and Conventional Heating Methods and Application in Removal of OTC, Chem. Eng. J. 171 (2011) 1446-1453.
DOI: 10.1016/j.cej.2011.05.041
Google Scholar
[15]
J. Kang, H.J. Liu, Y.M. Zheng, J.H. Qu, and J.P. Chen, Application of Nuclear Magnetic Resonance Spectroscopy, Fourier Transform Infrared Spectroscopy, UV–Visible Spectroscopy and Kinetic Modeling for Elucidation of Adsorption Chemistry in Uptake of Tetracycline by Zeolite Beta, J Colloid Interface Sci. 354 (2011) 261-267.
DOI: 10.1016/j.jcis.2010.10.065
Google Scholar
[16]
W.R. Chen, and C.H. Huang, Adsorption and Transformation of Tetracycline Antibiotics with Aluminum Oxide, Chemosphere. 79 (2010) 779-785.
DOI: 10.1016/j.chemosphere.2010.03.020
Google Scholar
[17]
Y.J. Wang, D.A. Jia, R.J. Sun, H.W. Zhu, and D.M. Zhou, Adsorption and Cosorption of Tetracycline and Copper (II) on Montmorillonite as Affected by Solution pH, Environ Sci Technol. 42 (2008) 3254-3259.
DOI: 10.1021/es702641a
Google Scholar
[18]
D. Avisar, O. Primor, I. Gozlan, and H. Mamane, Sorption of Sulfonamides and Tetracyclines to Montmorillonite Clay, Water Air Soil Pollut. 209 (2010) 439-450.
DOI: 10.1007/s11270-009-0212-8
Google Scholar
[19]
R.A. Figueroa, A. Leonard, and A.A. Mackay, Modeling Tetracycline Antibiotic Sorption to Clays, Environ Sci Technol. 38 (2004) 476-483.
DOI: 10.1021/es0342087
Google Scholar
[20]
T. Polubesova, D. Zadaka, L. Groisman, and S. Nir, Water Remediation by Micelle–clay System: Case Study for Tetracycline and Sulfonamide Antibiotics, Water Res. 40, (2006) 2369-2374.
DOI: 10.1016/j.watres.2006.04.008
Google Scholar
[21]
P.H. Chang, Z.H. Li, W.T. Jiang, and J.S. Jean, Adsorption and Intercalation of tetracycline by Swelling Clay Minerals, Appl Clay Sci. 46 (2009) 27-36.
DOI: 10.1016/j.clay.2009.07.002
Google Scholar
[22]
S.J. Aitcheson, J. Arnett, K.R. Murray, and J. Zhang, Removal of Aquaculture Therapeutants by Carbon Adsorption 1. Equilibrium Adsorption Behaviour of Single Components, Aquaculture. 183 (2000) 269-284.
DOI: 10.1016/s0044-8486(99)00304-x
Google Scholar
[23]
L.L. Ji, Y.Q. Wan, S.R. Zheng, and D.Q. Zhu, Adsorption of Tetracycline and Sulfamethoxazole on Crop Residue-Derived Ashes: Implication for the Relative Importance of Black Carbon to Soil Sorption, Environ Sci Technol. 45 (2011) 13, pp.5580-5586.
DOI: 10.1021/es200483b
Google Scholar
[24]
B. Chu, K.W. Goyne, S.H. Anderson, C.H. Lin, and R.P. Udawatta, Veterinary antibiotic sorption to agroforestry buffer, grass buffer and cropland soils, Agroforest Syst. 79 (2010) 67-80.
DOI: 10.1007/s10457-009-9273-3
Google Scholar
[25]
T.L.T. Laak, W.A. Gebbink, and J. Tolls, The Effect of pH and Ionic Strength on the Sorption of Sulfachloropyridazine, Tylosin, and Oxytetracycline to Soil, Environ Toxic Chem. 25 (2006) 904-911.
DOI: 10.1897/05-232r.1
Google Scholar
[26]
S.A. Sassman, and L.S. Lee, Sorption of Three Tetracyclines by Several Soils: Assessing the Role of pH and Cation Exchange, Environ Sci Technol. 39 (2005) 7452-7459.
DOI: 10.1021/es0480217
Google Scholar
[27]
D.A. Jia, D.M. Zhou, Y.J. Wang, H.W. Zhu, and J.L. Chen, Adsorption and Cosorption of Cu (II) and Tetracycline on Two Soils with Different Characteristics, Geoderma. 146 (2008) 224-230.
DOI: 10.1016/j.geoderma.2008.05.023
Google Scholar
[28]
A.D. Jones, G.L. Bruland, S.G. Agrawal, and D. Vasudevan, Facrors Influencing the Sorption of Oxytetracycline to Soils, Environ Toxic Chem. 24 (2005) 4, pp.761-770.
DOI: 10.1897/04-037r.1
Google Scholar
[29]
M.E. Parolo, M.C. Savini, J.M. Vallés, M.T. Baschini, and M.J. Avena, Tetracycline Adsorption on Montmorillonite: pH and Ionic Strength Effects, Appl Clay Sci. 40 (2008) 179-186.
DOI: 10.1016/j.clay.2007.08.003
Google Scholar
[30]
L. Aristilde, C. Marichal, J. Miéhé-Brendlé, B. Lanson, and L. Charlet, Interactions of Oxytetracycline with a Smectite Clay: A Spectroscopic Study with Molecular Simulations, Environ Sci Technol. 44 (2010) 7839-7845.
DOI: 10.1021/es102136y
Google Scholar