Ultrafast Response Humidity Sensor Based on Electrospun Porous BaTiO3 Nanofibers

Article Preview

Abstract:

Nanocrystalline and porous barium titanate (BaTiO3) nanofibers with diameter 200-400 nm were synthesized via electrospinning and followed calcinations. The morphology and microstructure of the nanofibers were characterized using field emission scanning electron microscope, X-ray diffractometer and transmission electron microscope, respectively. And the electrical and humidity sensing properties of the nanofibers were also measured. The results reveal that the BaTiO3 nanofibers have a conductivity of about 0.3 S/cm, and show an ultrafast response time (~0.7 s) and a recovery time (~0.4 s) to humidity at room temperature. In addition, the sensing mechanism was also discussed briefly based on its nanocrystalline and porous microstructure of the electrospun material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-48

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. Frey and D. A. Payne: Phys. Rev. B Vol. 54 (1992), p.3158

Google Scholar

[2] M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu and X. Wu: Phys. Rev. B Vol. 50 (1994), p.5941

Google Scholar

[3] G. Arlt, D. Hennings and G. Dewith: J. Appl. Phys. Vol. 58 (1985), p.1619

Google Scholar

[4] J. Wang, B. K. Xu, S. P. Ruan and S. P. Wang: Mater. Chem. Phys. Vol. 78 (2003), p.746

Google Scholar

[5] J. Wang, G. Song and J. Q. Qi: Ferroelectrics Vol. 355 (2007), p.165

Google Scholar

[6] J. Yuk and T. Troczynski: Sens. Actuators B: Chem. Vol. 94 (2003), p.290

Google Scholar

[7] J. J. Urban, W. S. Yun, Q. Gu and H. Park: J. Am. Chem. Soc Vol. 124 (2002), p.1186

Google Scholar

[8] W. S. Yun, J. J. Urban, Q. Gu and H. Park: Nano Lett. Vol. 2 (2002), p.447

Google Scholar

[9] R. Meyer Jr, R. R. Shrout and S. Yoshikawa: J. Am. Ceram. Soc. Vol. 81 (1998), p.861

Google Scholar

[10] J. Yuh, J. C. Nino, and W. M. Sigmund: Mater. Lett. Vol. 59 (2005), p.3645

Google Scholar

[11] D. Li and Y. Xia: Adv. Mater. Vol. 16 (2004), p.1151

Google Scholar

[12] S. Iijima: Nature Vol. 354 (1991) p.56

Google Scholar

[13] M. Morales and C. M. Lieber: Science Vol. 279 (1998), p.208

Google Scholar

[14] C. R. Martin: Science Vol. 266 (1994), p. (1961)

Google Scholar

[15] W. Han, S. Fan, Q. Li and Y. Hu: Science Vol. 277 (1997), p.1287

Google Scholar

[16] C. Schönenberger, B. M. I. van der Zande, L. G. J. Fokkink, M. Henny, C. Schmid, M. Krüger, A . Bachtold, R. Huber, H. Birk and U. Staufer: J. Phys. Chem. B Vol. 101 (1997), p.5497

DOI: 10.1021/jp963938g

Google Scholar

[17] W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor and J. C. Nino: J. Am. Ceram. Soc. Vol. 89 (2006), p.395

DOI: 10.1111/j.1551-2916.2005.00807.x

Google Scholar

[18] D. Li, J. T. McCann, Y. Xia and M. Marquez, Electrospinning: J. Am. Ceram. Soc. Vol. 89 (2006), p.1861

Google Scholar

[19] R. Ramaseshan, S. Sundarrajan, R. Jose and S. Ramakrishna: J. Appl. Phys. Vol. 102 (2007), p.111101

Google Scholar

[20] Z. Y. Li, H. N. Zhang, W. Zheng, W. Wang, H. M. Huang, C. Wang, A. G. MacDiarmid and Y. Wei: J. Am. Chem. Soc. Vol. 130 (2008), p.5036

Google Scholar

[21] D. J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild and I. D. Kim: Adv. Funct. Mater. Vol. 20 (2010), p.4258

Google Scholar

[22] Z. X. Dong, S. J. Kennedy and Y. Q. Wu: J. Power Sources Vol. 196 (2011), p.4886

Google Scholar

[23] Y. Z. Long, M. Yu, B. Sun, C. Z. Gu and Z. Y. Fan: Chem. Soc. Rev. Vol. 41 (2012) 4560

Google Scholar

[24] B. M. Kulwicki, Humidity sensors, J. Am. Ceram. Soc. Vol. 74 (1991), p.697

Google Scholar

[25] K. S. Chou, T. K. Lee and F. J. Liu: Sens. Actuators B: Chem. Vol. 56 (1999), p.106

Google Scholar