A First-Principles Study of Half-Metallic Full-Heusler Compound Ti2CoSi

Article Preview

Abstract:

The electronic structures and magnetic properties of full-Heusler alloy Ti2CoSi with Hg2CuTi-type have been investigated by first-principles calculations. The compound is predicted to be a potential half-metal ferromagnet. The calculations show that there is an energy gap in the minority spin of the band structures whereas the other spin is strongly metallic, which results in a complete spin polarization of the conduction electrons at the Fermi level. The compound has a total magnetic moment of-3.0μB per unit cell on first-principles calculations which is in excellent agreement with the SlaterPauling (SP) rule. The magnetic moments of Ti(A) atom and Ti(B) atom which are both larger than that of atom Co(C) are different. This difference comes from different atom coordination surroundings of Ti(A) and Ti(B) atoms in crystal structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

394-398

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Prinz: Science Vol. 282, (1998), p.1660

Google Scholar

[2] P. Ball: Nature Vol. 404, (2000), p.918

Google Scholar

[3] P. Grünberg: Phys. Today Vol.54, (2001), p.31

Google Scholar

[4] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow: Phys. Rev. Lett. Vol. 50, (1983), (2024)

Google Scholar

[5] S. Ishida, T. Masaki, S. Fujii and S. Asano: Physica B Vol. 245, (1998), p.1

Google Scholar

[6] R. Weht and W.E. Pickett: Phys. Rev. B Vol. 60, 13006 (1999)

Google Scholar

[7] A. Kellow, N.E. Fenineche, T. Grosdidier, H. Aourag and C. Coddet: J. Appl. Phys. Vol. 94, (2003), p.3292

Google Scholar

[8] S. Ishida, S. Kawakami and S. Asano: Mater. Trans. JIM Vol. 45, (2004), p.1065

Google Scholar

[9] Y. Miura, K. Nagano and M. Shirai: Phys. Rev. B Vol. 69, (2004), p.144413

Google Scholar

[10] S. Ishida, S. Sugimura, S. Fujii and S. Asano: J. Phys.: Condens. Matter Vol. 3, (1991), p.5793

Google Scholar

[11] R.Y. Umetsu, K. Kobayashi, R. Kainuma, A. Fujita, K. Fukamichi, K. Ishida and A. Sakuma: Appl. Phys. Lett Vol. 85, (2004), p. (2011)

Google Scholar

[12] S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov and C. Felser: Appl. Phys. Lett Vol. 88, (2006), p.032503

Google Scholar

[13] J. Li, Y. Li, G. Zhou, Y. Sun and C. Q. Sun: Appl. Phys. Lett Vol. 94, (2009), p.242502

Google Scholar

[14] J. Li, G. F. Chen, J. F. Li, Y. X. Li and C. Q. Sun: Scripta Materialia Vol. 59, (2008), p.1107

Google Scholar

[15] J. Li, G.F. Chen, H.Y. Liu, Y.X. Li, J.F. Li and X.W. Xu: J. Magn. Magn. Mater Vol. 322, (2010), p.1

Google Scholar

[16] H. C. Kandpal, G. H. Fecher and C. Felser: J. Phys. D Vol. 40, (2007), p.1507

Google Scholar

[17] S. Sanvito and N. A. Hill: Phys. Rev. B Vol. 62, (2000), p.15553

Google Scholar

[18] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136, (1964), p. B864

Google Scholar

[19] E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman: Phys. Rev. B Vol. 24, (1981), p.864

Google Scholar

[20] M. Weinert, E. Wimmer and A.J. Freeman: Phys. Rev. B Vol. 26, (1982), p.4571

Google Scholar

[21] J. P. Perdew, J. A. Chevary, S. H. Vosko, A. Jackson, M. R. Pederson and C. Fiolhais: Phys. Rev. B Vol. 46, (1992), p.6671

Google Scholar

[22] I. Galanakis, P. H. Dederichs and N. Papamkolaou: Phys. Rev. B Vol. 66, (2002), p.174429

Google Scholar

[23] J. Li, Y. Li, X. Dai and X. Xu: J. Magn. Magn. Mater. Vol. 321, (2009), p.365

Google Scholar

[24] K. Capelle and G. Vignale: Phys. Rev. Lett. Vol. 86, (2001), p.5546

Google Scholar