Failure Analysis of Desulfurization Slurry Circulating Pump and HVOF Coating Protection Technology Progress

Article Preview

Abstract:

Failure form and erosion-corrosive mechanism of desulfurization slurry circulating pump were analyzed comprehensively, its protection status and HVOF spraying protection technology research were discussed, the technical characteristics and good prospects of HVOF applied in the slurry circulating pump were pointed out in this paper.Keywords: Desulfurization, Slurry circulating pump, Erosion, Corrosion, HVOF

You might also be interested in these eBooks

Info:

Periodical:

Pages:

374-382

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.W. Batchelor and G.W. Stachowiak, Predicting synergism between corrosive and abrasive wear, Wear, 123 (1988) 281-291.

DOI: 10.1016/0043-1648(88)90144-5

Google Scholar

[2] B.W. Madsen. Measurement of erosion-corrosion synergism with a slurry wear test apparatus, Wear, 123 (1988) 127-142.

DOI: 10.1016/0043-1648(88)90095-6

Google Scholar

[3] R. J. Noel and A. Ball. On the synergistic effects of abrasion and corrosion during wear. Wear, 87 (1983) 351-361.

DOI: 10.1016/0043-1648(83)90138-2

Google Scholar

[4] I. Finnie. The Mechanism of Erosion of Ductile Metals [A]. Proc.3rd US Congress of Applied Mechanic [C] ASME, New York, 1958:527-532

Google Scholar

[5] Hiroshi Tsukamoto, Mitsuo Uno, Jun-ichi, Asakura., et al. Pressure distribution and flow visualization of solid-liquid two phase flow in a slurry pump impeller[A].Pumps and Fans[C].(2003)

Google Scholar

[6] H. Y. Xu, D. R. Lu, The research on abrasion of the impellers of centrifugal slurry pump. Tribology. 18 (1998) 248-253.

Google Scholar

[7] B. H. Zhou, H. S. Wang, Anaiysis wear of slurry pump and study of pumt design. Hydraulic Coal Mining & Pipeline Transportat ion. 2 (2000) 91-92.

Google Scholar

[8] S. Li, Abrasion mechanism of vanes with ADI in slurry pump. Fluid Machinery. 28 (2000) 5-8.

Google Scholar

[9] H. Wang, Wear analysis and study of the impellers of centrifugal slurry pump. Hydraulic Coal Mining & Pipeline Transportation. 2 (1996) 17-20.

Google Scholar

[10] H.x. Li. Practise on Pruducing Flowing Parts of Slurry Pumps[J]. Research Studies on Foundry Equipment (2003) No.1, pp.28-31.

Google Scholar

[11] L.H. Pengo The Machining of impeller of Washed Coal Slurry Pump [J]. Machine Tool &Hydraulics VoI.37 (2009) No.8, pp.69-70.

Google Scholar

[12] Cornelius, S. Pump condition monitoring through vibration analysis. In Proceedgins of the Pumps: Maintenance, Design and Reliability Conference 2008 – IDC Technology, Johannesburg, South Africa, 2008.

Google Scholar

[13] Jiang, W., Spurgeon, S. K., Twiddle, J. A., Schlindwein, F. S., Feng, Y., and Thanagasundram, S. A wavelet cluster-based band-pass filtering and envelope demodulation approach with application to fault diagnosis in a dry vacuum pump. Proc. IMechE, Part C: J. Mechanical Engineering Science, 2007, 221 (C11), 1279-1286.

DOI: 10.1243/09544062JMES544

Google Scholar

[14] Wang, L. and Hope, A. D. Bearing fault diagnosis using multi-layer neural networks. Insight: Non-Destr. Test. Cond. Monit. , 2004, 46(8), 451-455.

DOI: 10.1784/insi.46.8.451.39377

Google Scholar

[15] Wang, J. and Hu, H. Vibration-based fault diagnosis of pump using fuzzy technique. Measurement, 2006, 39(2), 176–185.

DOI: 10.1016/j.measurement.2005.07.015

Google Scholar

[16] Chudina, M. Noise as an indicator of cavitation in a centrifugal pump. Acoust. Phys. 2003, 49(4), 463-474.

DOI: 10.1134/1.1591303

Google Scholar

[17] Fan Aiming, Long Jinming, Tao Ziyun. Failure analysis of the impeller of a slurry pump subjected to corrosive wear. Wear 181-183(1995) 876-882

DOI: 10.1016/0043-1648(95)90210-4

Google Scholar

[18] Hutchings, I.M. (1992), Tribology: Friction and Wear of Engineering Materials, CRC Press, Boca Raton, FL.

Google Scholar

[19] Stachowiak, G.W. and Batcheclor, A.W. (1993), Engineering Tribology, Elsevier, Amsterdam.

Google Scholar

[20] Larsson, P., Axen, N., Ekstrom, T., Gordeev, S. and Hogmark, S. (1999), "Wear of a new type of diamond composite", International Fournal of Refractory Metals & Hard Materials, Vol. 17, pp.453-460.

DOI: 10.1016/s0263-4368(00)00006-8

Google Scholar

[21] Sundstrom, A., Rendon, Rendon, J. and Olsson, M. (2001), "Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions", Wear, Vol. 250, pp.744-754.

DOI: 10.1016/s0043-1648(01)00712-8

Google Scholar

[22] Arnell, P.D., Davies, P.B., Halling, J. and Whomes, T.L.(1993), Tribology, Principles and Design Application, Springer-Verlag, New York, NY.

Google Scholar

[23] Van Bennekom, A.,Berndt, F. and Rassool, M.N. (1999), "Pump impeller failures-a compendium of case studies", Engineering Failure Analysis, Vol. 8, pp.145-156.

DOI: 10.1016/s1350-6307(99)00044-8

Google Scholar

[24] Khalid, Y. A. and Sapuan, S. M.Wear analysis of centrifugal slurry pump impellers. Ind. Lubr. Tribol. , 2007, 59(1), 18-28.

DOI: 10.1108/00368790710723106

Google Scholar

[25] Aimming FAN, Jinming LONG and Ziyun TAO, Failure analysis of the impeller of a slurry pump subjected to corrosive wear [J]. Wear, 1995, 181-183: 876-882

DOI: 10.1016/0043-1648(95)90210-4

Google Scholar

[26] Yugui ZHENG, Zhiming YAO and Wei K E. Erosion-corrosion resistant alloy development for aggressive slurry flows [J]. Materials Letters, 2000, 46: 362-368

DOI: 10.1016/s0167-577x(00)00255-x

Google Scholar

[27] Y. Li, G. T. Burstein and I. M. Hutchings. The influence of corrosion on the erosion of aluminum by aqueous silica slurries[J]. Wear, 1995, 186-187: 515-522

DOI: 10.1016/0043-1648(95)07181-4

Google Scholar

[28] A.W. Batchelor and G. W. Stachowiak. Predicting synergism between corrosion and abrasive wear[J]. Wear, 1988, 123: 281-291

DOI: 10.1016/0043-1648(88)90144-5

Google Scholar

[29] B.W. Madsen. Measurement of erosion-corrosion synergism with a slurry wear test apparatus [J]. Wear, 1998, 123: 127-142

DOI: 10.1016/0043-1648(88)90095-6

Google Scholar

[30] Xinchun LU, Ke SHI, Shizhuo LI and Xiaoxia JIANG.Effects of surface deformation on corrosive wear of stainless steel in sulfuric acid solution. Wear, 1999. 225-229: 537-543

DOI: 10.1016/s0043-1648(99)00019-8

Google Scholar

[31] C.M. Schillmoller, in B.J. Moniz and W.I. Pollock (eds.), Process Industries Corrosion, NACE, Houston, TX, 1986, p.161.

Google Scholar

[32] E.M. Jallouli et al., Int. Colloq. on Stainless Steels, Belgium, April 27-28, 1988, in Bull. Cercle Etud. Met, I5 (15-16) (1988) 18.1-18.14.

Google Scholar

[33] V. Fishman, Proc. Conf on Engineering Solutions to Industrial Corrosion Problems, June 7-9, 1993, NACE International, Houston, TX 1993, 20, p.3.

Google Scholar

[34] Qi, FANG, P.S. Sidky and M.G. Hocking. Microripple formation and removal mechanism of ceramic materials by solid-liquid slurry erosion[J]. Wear, 1998, 223: 93-101

DOI: 10.1016/s0043-1648(98)00313-5

Google Scholar

[35] E. Ritter (Ed). Erosion of Ceramic Materials [M], Trans Tech Publications, Switzerland,1992.

Google Scholar

[36] H.C. SHEN, W.S. ZONG, J.J. NIE, J.WANG. Study on High-Speed Cutting of Hi-Cr Cast Iron Impeller and Sheath of Slurry Pump Using Overall PCBN Cutting Tools. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE)

DOI: 10.1109/cmce.2010.5610273

Google Scholar

[37] API Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems, API RP 14E, American Petroleum Institute, 3rd Edition, Washington, DC, December 1981.

Google Scholar

[38] S.A. Shirazi, B.S. McLaury, J.R. Shadley, E.F. Rybicki, Genera-lisation of the API RP 14E guideline for erosive service, SPE28518 American Petroleum Institute Recommended Practice (1994) 583–592.

DOI: 10.2118/28518-pa

Google Scholar

[39] Dong Xing, Zhang Hai-lu, Wang Xin-yong. Finite element analysis of wear for centrifugal slurry pump . Procedia Earth and Planetary Science 1 (2009) 1532–1538

DOI: 10.1016/j.proeps.2009.09.236

Google Scholar

[40] X M Zhao, Q H Hu, Y G Lei, and M J Zuo. Vibration-based fault diagnosis of slurry pump impellers using neighbourhood rough set models. Mechanical Engineering Science Proc. IMechE Vol. 224 Part C: J. (2009)

DOI: 10.1243/09544062jmes1777

Google Scholar

[41] R. J. Llewellyn, S.K. Yick, K.F. Dolman. Scouring erosion resistance of metallic materials used in slurry pump service. Wear 256 (2004) 592-599.

DOI: 10.1016/j.wear.2003.10.002

Google Scholar

[42] J. Tuzson, Laboratory slurry erosion tests and pump wear calculations, ASME J. Fluids Eng. 106 (1984) 135-140.

DOI: 10.1115/1.3243089

Google Scholar

[43] H. Mcl, Clark, R.J. Llewellyn, Assessment of the erosion resistance of steels used for slurry handling and transport in mineral processing applications, Wear 250(2001) 32-44

DOI: 10.1016/s0043-1648(01)00628-7

Google Scholar

[44] S.Z. Luo, Y.G. Zheng, J. Li, W. Ke, Wear 249 (2001) 733–738.

Google Scholar

[45] S. Bouaricha, J.-G. Legoux, B.R. Marple, ITSC 2005 Proc. 5 (2005) 981–985.

Google Scholar

[46] M. Bjordal, E. Bardal, T. Rogne, T.G. Eggen, Wear 186–187 (1995) 508–514.

DOI: 10.1016/0043-1648(95)07148-2

Google Scholar

[47] M.M. Stack, T.M. Abd El-Badia, Wear 264 (2008) 826–837.

Google Scholar

[48] G.C. Saha, T.I. Khan, G.A. Zhang, Corros. Sci. 53 (2011) 2106–2114.

Google Scholar

[49] S. Shrestha, A.J. Sturgeon, Surf. Eng. 20 (2004) 237–343.

Google Scholar

[50] K.S. Tan, J.A. Wharton, R.J.K. Wood, Wear 258 (2005) 629–640.

Google Scholar

[51] V.A.D. Souza, A. Neville, Wear 259 (2005) 171–180.

Google Scholar

[52] R.J.K. Wood, Wear 261 (2006) 1012–1023.

Google Scholar

[53] S. Shrestha, T. Hodgkiess, A. Neville, Wear 259 (2005) 208–218.

Google Scholar

[54] D.A. Stewart, P.H. Shipway, D.G. McCartney, Abrasive wear be-haviour of conventional and nanocomposite HVOF-sprayed WC Co coatings, Wear 225–229 (1999) 789–798.

DOI: 10.1016/s0043-1648(99)00032-0

Google Scholar

[55] T. Sudaprasert, P.H. Shipway, D.G. McCarteney, Sliding wear be-haviour of HVOF sprayed WC Co coatings deposited with both gas-fuelled and liquid-fuelled system, Wear 255 (2003) 943–949.

DOI: 10.1016/s0043-1648(03)00293-x

Google Scholar

[56] J. Berget, E. Bardal, T. Rogne, Effects of powder composition on the erosion, corrosion and erosion–corrosion properties of HVOF sprayed WC based coatings, in: Proceedings of 15th International Thermal Spray Conference, Nice, France, 1998, p.305–312.

DOI: 10.31399/asm.cp.itsc1998p0305

Google Scholar

[57] L. Fedrizzi, L. Valentinelli, S. Rossi, S. Segna, Tribocorrosion behaviour of HVOF cermet coatings, Corros. Sci. 49 (2007) 2781–2799.

DOI: 10.1016/j.corsci.2007.02.003

Google Scholar

[58] Qiaoqin Yang, Tetsuya Senda, Akira Ohmori. Effect of carbide grain size on microstructure and sliding wear behavior of HVOF sprayed WC-12% Co coatings. Wear 254 (2003) 23–34

DOI: 10.1016/s0043-1648(02)00294-6

Google Scholar

[59] H.M. Hawthorne, B. Arsenault, J.P. Immarigeon, J.G. Legoux, V.R. Parameswaran, Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings, Wear 225–229 (1999) 825–834.

DOI: 10.1016/s0043-1648(99)00034-4

Google Scholar

[60] J.M. Perry, A. Neville, V.A. Wilson, T. Hodgkiess, Assessment of the corrosion rates and mechanisms of a WC–Co–Cr HVOF coating in static and liquid–solid impingement saline environments, Surf. Coat. Technol. 137 (2001) 43–51.

DOI: 10.1016/s0257-8972(00)01062-8

Google Scholar

[61] T. Rogne, J. Berget, Corrosion, erosion–corrosion and wear resistance of HVOF sprayed WC type coatings with a corrosion resistant binder, Corrosion 48 (1999) 1–11.

DOI: 10.31399/asm.cp.itsc1998p0305

Google Scholar

[62] C. Allen, M. Sheen, J. Williams, V.A. Pugsley, The wear of ultrafine WC-Co hard metals, Wear 250 (2001) 604–610.

DOI: 10.1016/s0043-1648(01)00667-6

Google Scholar

[63] K. Jia, T.E. Fischer.Abrasion resistance of nanostructured and conventional cemented carbides. Wear 200 (1996) 206–214

DOI: 10.1016/s0043-1648(96)07277-8

Google Scholar

[64] T.Y. Cho, J.H. Yoon, K.S. Kim, K.O. Song, Y.K. Joo, W, Fang, S.H. Zhang, S.J. Youn, H.G., Chun, S.Y. Hwang. A study on HVOF coatings of micron and nano WC-Co powders. Surface & Coatings Technology 202 (2008) 5556-5559.

DOI: 10.1016/j.surfcoat.2008.06.106

Google Scholar

[65] P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, Effects of Carbide Size and Co Content on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-Co Coatings. Surf. Coat. Technol., 2007, 202(3), pp.509-521

DOI: 10.1016/j.surfcoat.2007.06.026

Google Scholar

[66] Pornthep Chivavibul, Makoto Watanabe, Seiji Kuroda, Kentaro Shinoda. Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC-Co coatings. Surface & Coatings Technology 202 (2007) 509 – 521.

DOI: 10.1016/j.surfcoat.2007.06.026

Google Scholar