[1]
A.W. Batchelor and G.W. Stachowiak, Predicting synergism between corrosive and abrasive wear, Wear, 123 (1988) 281-291.
DOI: 10.1016/0043-1648(88)90144-5
Google Scholar
[2]
B.W. Madsen. Measurement of erosion-corrosion synergism with a slurry wear test apparatus, Wear, 123 (1988) 127-142.
DOI: 10.1016/0043-1648(88)90095-6
Google Scholar
[3]
R. J. Noel and A. Ball. On the synergistic effects of abrasion and corrosion during wear. Wear, 87 (1983) 351-361.
DOI: 10.1016/0043-1648(83)90138-2
Google Scholar
[4]
I. Finnie. The Mechanism of Erosion of Ductile Metals [A]. Proc.3rd US Congress of Applied Mechanic [C] ASME, New York, 1958:527-532
Google Scholar
[5]
Hiroshi Tsukamoto, Mitsuo Uno, Jun-ichi, Asakura., et al. Pressure distribution and flow visualization of solid-liquid two phase flow in a slurry pump impeller[A].Pumps and Fans[C].(2003)
Google Scholar
[6]
H. Y. Xu, D. R. Lu, The research on abrasion of the impellers of centrifugal slurry pump. Tribology. 18 (1998) 248-253.
Google Scholar
[7]
B. H. Zhou, H. S. Wang, Anaiysis wear of slurry pump and study of pumt design. Hydraulic Coal Mining & Pipeline Transportat ion. 2 (2000) 91-92.
Google Scholar
[8]
S. Li, Abrasion mechanism of vanes with ADI in slurry pump. Fluid Machinery. 28 (2000) 5-8.
Google Scholar
[9]
H. Wang, Wear analysis and study of the impellers of centrifugal slurry pump. Hydraulic Coal Mining & Pipeline Transportation. 2 (1996) 17-20.
Google Scholar
[10]
H.x. Li. Practise on Pruducing Flowing Parts of Slurry Pumps[J]. Research Studies on Foundry Equipment (2003) No.1, pp.28-31.
Google Scholar
[11]
L.H. Pengo The Machining of impeller of Washed Coal Slurry Pump [J]. Machine Tool &Hydraulics VoI.37 (2009) No.8, pp.69-70.
Google Scholar
[12]
Cornelius, S. Pump condition monitoring through vibration analysis. In Proceedgins of the Pumps: Maintenance, Design and Reliability Conference 2008 – IDC Technology, Johannesburg, South Africa, 2008.
Google Scholar
[13]
Jiang, W., Spurgeon, S. K., Twiddle, J. A., Schlindwein, F. S., Feng, Y., and Thanagasundram, S. A wavelet cluster-based band-pass filtering and envelope demodulation approach with application to fault diagnosis in a dry vacuum pump. Proc. IMechE, Part C: J. Mechanical Engineering Science, 2007, 221 (C11), 1279-1286.
DOI: 10.1243/09544062JMES544
Google Scholar
[14]
Wang, L. and Hope, A. D. Bearing fault diagnosis using multi-layer neural networks. Insight: Non-Destr. Test. Cond. Monit. , 2004, 46(8), 451-455.
DOI: 10.1784/insi.46.8.451.39377
Google Scholar
[15]
Wang, J. and Hu, H. Vibration-based fault diagnosis of pump using fuzzy technique. Measurement, 2006, 39(2), 176–185.
DOI: 10.1016/j.measurement.2005.07.015
Google Scholar
[16]
Chudina, M. Noise as an indicator of cavitation in a centrifugal pump. Acoust. Phys. 2003, 49(4), 463-474.
DOI: 10.1134/1.1591303
Google Scholar
[17]
Fan Aiming, Long Jinming, Tao Ziyun. Failure analysis of the impeller of a slurry pump subjected to corrosive wear. Wear 181-183(1995) 876-882
DOI: 10.1016/0043-1648(95)90210-4
Google Scholar
[18]
Hutchings, I.M. (1992), Tribology: Friction and Wear of Engineering Materials, CRC Press, Boca Raton, FL.
Google Scholar
[19]
Stachowiak, G.W. and Batcheclor, A.W. (1993), Engineering Tribology, Elsevier, Amsterdam.
Google Scholar
[20]
Larsson, P., Axen, N., Ekstrom, T., Gordeev, S. and Hogmark, S. (1999), "Wear of a new type of diamond composite", International Fournal of Refractory Metals & Hard Materials, Vol. 17, pp.453-460.
DOI: 10.1016/s0263-4368(00)00006-8
Google Scholar
[21]
Sundstrom, A., Rendon, Rendon, J. and Olsson, M. (2001), "Wear behaviour of some low alloyed steels under combined impact/abrasion contact conditions", Wear, Vol. 250, pp.744-754.
DOI: 10.1016/s0043-1648(01)00712-8
Google Scholar
[22]
Arnell, P.D., Davies, P.B., Halling, J. and Whomes, T.L.(1993), Tribology, Principles and Design Application, Springer-Verlag, New York, NY.
Google Scholar
[23]
Van Bennekom, A.,Berndt, F. and Rassool, M.N. (1999), "Pump impeller failures-a compendium of case studies", Engineering Failure Analysis, Vol. 8, pp.145-156.
DOI: 10.1016/s1350-6307(99)00044-8
Google Scholar
[24]
Khalid, Y. A. and Sapuan, S. M.Wear analysis of centrifugal slurry pump impellers. Ind. Lubr. Tribol. , 2007, 59(1), 18-28.
DOI: 10.1108/00368790710723106
Google Scholar
[25]
Aimming FAN, Jinming LONG and Ziyun TAO, Failure analysis of the impeller of a slurry pump subjected to corrosive wear [J]. Wear, 1995, 181-183: 876-882
DOI: 10.1016/0043-1648(95)90210-4
Google Scholar
[26]
Yugui ZHENG, Zhiming YAO and Wei K E. Erosion-corrosion resistant alloy development for aggressive slurry flows [J]. Materials Letters, 2000, 46: 362-368
DOI: 10.1016/s0167-577x(00)00255-x
Google Scholar
[27]
Y. Li, G. T. Burstein and I. M. Hutchings. The influence of corrosion on the erosion of aluminum by aqueous silica slurries[J]. Wear, 1995, 186-187: 515-522
DOI: 10.1016/0043-1648(95)07181-4
Google Scholar
[28]
A.W. Batchelor and G. W. Stachowiak. Predicting synergism between corrosion and abrasive wear[J]. Wear, 1988, 123: 281-291
DOI: 10.1016/0043-1648(88)90144-5
Google Scholar
[29]
B.W. Madsen. Measurement of erosion-corrosion synergism with a slurry wear test apparatus [J]. Wear, 1998, 123: 127-142
DOI: 10.1016/0043-1648(88)90095-6
Google Scholar
[30]
Xinchun LU, Ke SHI, Shizhuo LI and Xiaoxia JIANG.Effects of surface deformation on corrosive wear of stainless steel in sulfuric acid solution. Wear, 1999. 225-229: 537-543
DOI: 10.1016/s0043-1648(99)00019-8
Google Scholar
[31]
C.M. Schillmoller, in B.J. Moniz and W.I. Pollock (eds.), Process Industries Corrosion, NACE, Houston, TX, 1986, p.161.
Google Scholar
[32]
E.M. Jallouli et al., Int. Colloq. on Stainless Steels, Belgium, April 27-28, 1988, in Bull. Cercle Etud. Met, I5 (15-16) (1988) 18.1-18.14.
Google Scholar
[33]
V. Fishman, Proc. Conf on Engineering Solutions to Industrial Corrosion Problems, June 7-9, 1993, NACE International, Houston, TX 1993, 20, p.3.
Google Scholar
[34]
Qi, FANG, P.S. Sidky and M.G. Hocking. Microripple formation and removal mechanism of ceramic materials by solid-liquid slurry erosion[J]. Wear, 1998, 223: 93-101
DOI: 10.1016/s0043-1648(98)00313-5
Google Scholar
[35]
E. Ritter (Ed). Erosion of Ceramic Materials [M], Trans Tech Publications, Switzerland,1992.
Google Scholar
[36]
H.C. SHEN, W.S. ZONG, J.J. NIE, J.WANG. Study on High-Speed Cutting of Hi-Cr Cast Iron Impeller and Sheath of Slurry Pump Using Overall PCBN Cutting Tools. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE)
DOI: 10.1109/cmce.2010.5610273
Google Scholar
[37]
API Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems, API RP 14E, American Petroleum Institute, 3rd Edition, Washington, DC, December 1981.
Google Scholar
[38]
S.A. Shirazi, B.S. McLaury, J.R. Shadley, E.F. Rybicki, Genera-lisation of the API RP 14E guideline for erosive service, SPE28518 American Petroleum Institute Recommended Practice (1994) 583–592.
DOI: 10.2118/28518-pa
Google Scholar
[39]
Dong Xing, Zhang Hai-lu, Wang Xin-yong. Finite element analysis of wear for centrifugal slurry pump . Procedia Earth and Planetary Science 1 (2009) 1532–1538
DOI: 10.1016/j.proeps.2009.09.236
Google Scholar
[40]
X M Zhao, Q H Hu, Y G Lei, and M J Zuo. Vibration-based fault diagnosis of slurry pump impellers using neighbourhood rough set models. Mechanical Engineering Science Proc. IMechE Vol. 224 Part C: J. (2009)
DOI: 10.1243/09544062jmes1777
Google Scholar
[41]
R. J. Llewellyn, S.K. Yick, K.F. Dolman. Scouring erosion resistance of metallic materials used in slurry pump service. Wear 256 (2004) 592-599.
DOI: 10.1016/j.wear.2003.10.002
Google Scholar
[42]
J. Tuzson, Laboratory slurry erosion tests and pump wear calculations, ASME J. Fluids Eng. 106 (1984) 135-140.
DOI: 10.1115/1.3243089
Google Scholar
[43]
H. Mcl, Clark, R.J. Llewellyn, Assessment of the erosion resistance of steels used for slurry handling and transport in mineral processing applications, Wear 250(2001) 32-44
DOI: 10.1016/s0043-1648(01)00628-7
Google Scholar
[44]
S.Z. Luo, Y.G. Zheng, J. Li, W. Ke, Wear 249 (2001) 733–738.
Google Scholar
[45]
S. Bouaricha, J.-G. Legoux, B.R. Marple, ITSC 2005 Proc. 5 (2005) 981–985.
Google Scholar
[46]
M. Bjordal, E. Bardal, T. Rogne, T.G. Eggen, Wear 186–187 (1995) 508–514.
DOI: 10.1016/0043-1648(95)07148-2
Google Scholar
[47]
M.M. Stack, T.M. Abd El-Badia, Wear 264 (2008) 826–837.
Google Scholar
[48]
G.C. Saha, T.I. Khan, G.A. Zhang, Corros. Sci. 53 (2011) 2106–2114.
Google Scholar
[49]
S. Shrestha, A.J. Sturgeon, Surf. Eng. 20 (2004) 237–343.
Google Scholar
[50]
K.S. Tan, J.A. Wharton, R.J.K. Wood, Wear 258 (2005) 629–640.
Google Scholar
[51]
V.A.D. Souza, A. Neville, Wear 259 (2005) 171–180.
Google Scholar
[52]
R.J.K. Wood, Wear 261 (2006) 1012–1023.
Google Scholar
[53]
S. Shrestha, T. Hodgkiess, A. Neville, Wear 259 (2005) 208–218.
Google Scholar
[54]
D.A. Stewart, P.H. Shipway, D.G. McCartney, Abrasive wear be-haviour of conventional and nanocomposite HVOF-sprayed WC Co coatings, Wear 225–229 (1999) 789–798.
DOI: 10.1016/s0043-1648(99)00032-0
Google Scholar
[55]
T. Sudaprasert, P.H. Shipway, D.G. McCarteney, Sliding wear be-haviour of HVOF sprayed WC Co coatings deposited with both gas-fuelled and liquid-fuelled system, Wear 255 (2003) 943–949.
DOI: 10.1016/s0043-1648(03)00293-x
Google Scholar
[56]
J. Berget, E. Bardal, T. Rogne, Effects of powder composition on the erosion, corrosion and erosion–corrosion properties of HVOF sprayed WC based coatings, in: Proceedings of 15th International Thermal Spray Conference, Nice, France, 1998, p.305–312.
DOI: 10.31399/asm.cp.itsc1998p0305
Google Scholar
[57]
L. Fedrizzi, L. Valentinelli, S. Rossi, S. Segna, Tribocorrosion behaviour of HVOF cermet coatings, Corros. Sci. 49 (2007) 2781–2799.
DOI: 10.1016/j.corsci.2007.02.003
Google Scholar
[58]
Qiaoqin Yang, Tetsuya Senda, Akira Ohmori. Effect of carbide grain size on microstructure and sliding wear behavior of HVOF sprayed WC-12% Co coatings. Wear 254 (2003) 23–34
DOI: 10.1016/s0043-1648(02)00294-6
Google Scholar
[59]
H.M. Hawthorne, B. Arsenault, J.P. Immarigeon, J.G. Legoux, V.R. Parameswaran, Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings, Wear 225–229 (1999) 825–834.
DOI: 10.1016/s0043-1648(99)00034-4
Google Scholar
[60]
J.M. Perry, A. Neville, V.A. Wilson, T. Hodgkiess, Assessment of the corrosion rates and mechanisms of a WC–Co–Cr HVOF coating in static and liquid–solid impingement saline environments, Surf. Coat. Technol. 137 (2001) 43–51.
DOI: 10.1016/s0257-8972(00)01062-8
Google Scholar
[61]
T. Rogne, J. Berget, Corrosion, erosion–corrosion and wear resistance of HVOF sprayed WC type coatings with a corrosion resistant binder, Corrosion 48 (1999) 1–11.
DOI: 10.31399/asm.cp.itsc1998p0305
Google Scholar
[62]
C. Allen, M. Sheen, J. Williams, V.A. Pugsley, The wear of ultrafine WC-Co hard metals, Wear 250 (2001) 604–610.
DOI: 10.1016/s0043-1648(01)00667-6
Google Scholar
[63]
K. Jia, T.E. Fischer.Abrasion resistance of nanostructured and conventional cemented carbides. Wear 200 (1996) 206–214
DOI: 10.1016/s0043-1648(96)07277-8
Google Scholar
[64]
T.Y. Cho, J.H. Yoon, K.S. Kim, K.O. Song, Y.K. Joo, W, Fang, S.H. Zhang, S.J. Youn, H.G., Chun, S.Y. Hwang. A study on HVOF coatings of micron and nano WC-Co powders. Surface & Coatings Technology 202 (2008) 5556-5559.
DOI: 10.1016/j.surfcoat.2008.06.106
Google Scholar
[65]
P. Chivavibul, M. Watanabe, S. Kuroda, and K. Shinoda, Effects of Carbide Size and Co Content on the Microstructure and Mechanical Properties of HVOF-Sprayed WC-Co Coatings. Surf. Coat. Technol., 2007, 202(3), pp.509-521
DOI: 10.1016/j.surfcoat.2007.06.026
Google Scholar
[66]
Pornthep Chivavibul, Makoto Watanabe, Seiji Kuroda, Kentaro Shinoda. Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC-Co coatings. Surface & Coatings Technology 202 (2007) 509 – 521.
DOI: 10.1016/j.surfcoat.2007.06.026
Google Scholar