Thermoelectric Power of Carbon Fiber Reinforced Cement Composites Enhanced by Ca3Co4O9

Article Preview

Abstract:

Micro-sized Ca3Co4O9 powder was prepared by solid phase method at 850-950°C in air atmosphere. Seebeck effect of carbon fiber reinforced cement composites was enhanced efficiently by combining the Ca3Co4O9 powder of 3.0wt.% by mass of cement. The absolute thermoelectric power achieves 1.65 fold increase and is up to 58.6μV/°C at room temperature. The lower activation energy of holes carriers and higher carrier concentration by doping Ca3Co4O9, are probably attributed to the increase of absolute thermoelectric power.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

354-357

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.D.L. Chung: Composites: Part B, Vol. 31 (2000), p.511.

Google Scholar

[2] A. Harb: Renew Energ, Vol. 36 (2011), p.2641.

Google Scholar

[3] S. Bhattacharjee, A.K. Batra and J. Cain: Green Streets and Highways 2010: An Interactive Conference on the State of the Art and How to Achieve Sustainable Outcomes Proceedings of the Green Streets and Highways 2010 Conference (Denver. Colorado, 2011) p.258.

DOI: 10.1061/41148(389)22

Google Scholar

[4] L. Bell: Science, Vol. 321(2008) No.5895, p.1457.

Google Scholar

[5] D.D.L. Chung: Carbon, Vol. 50 (2012), p.3342.

Google Scholar

[6] M.Q. Sun, Z.Q. Li, Q.Z. Mao and D.R. Shen: Cement Concrete Res, Vol. 29 (1999), p.769.

Google Scholar

[7] S.H. Wen and D.D.L. Chung: Cement Concrete Res, Vol. 29 (1999), p.1989.

Google Scholar

[8] J.Y. Cao and D.D.L. Chung: Cement Concrete Res, Vol. 35 (2005), p.810.

Google Scholar

[9] H.Y. Cao, W. Yao and J.J. Qin: Adv Mater Res, Vol. 177 (2011), p.566.

Google Scholar

[10] S.H. Wen and D.D.L. Chung: Cement Concrete Res, Vol. 34 (2004), p.2341.

Google Scholar

[11] B. Demirel and S. Yazicioglu: New Carbon Mater, Vol. 23 (2008) No.1, p.21.

Google Scholar

[12] W.Y. Zhao,  W.F. Zhang,  C.H. Ma, Y.J. Cai and D.R. Zhu: Journal of Daqing Petroleum Institute,Vol. 32 (2008), p.83 (In Chinese).

Google Scholar

[13] Z.Q. Tang,  C.F. Tong, J.S.  Qian and Z. Wang: Journal of Chongqing Jianzhu University, Vol. 30 (2008), p.125 (In Chinese).

Google Scholar

[14] S.H. Wen and D.D.L. Chung: Carbon, Vol. 40 (2002), p.2495.

Google Scholar

[15] D.D. Pollock: Thermoelectricity: Theory, Thermometry, Tool (ASTM Special Technical Publication 852, Philadelphia, United States of America, 1985) p.121.

Google Scholar

[16] J.R. Sootsman, D.Y. Chung and M.G. Kanatzidis: Angew Chem Int Ed, Vol. 48 (2009), p.8616.

Google Scholar

[17] M. Ohtaki,  D. Ogura,  K. Eguchi and H. Arai: J Mater Chem, Vol. 4 (1994), p.653.

Google Scholar

[18] G. M. Beensh-Marchwicka, E. Prociow and W. Mielcarek: Cryst Res Technol, Vol. 36 (2001), p.1035.

Google Scholar

[19] S. Iwanaga, M. Marciniak, R.B. Darling and F.S. Ohuchi: J Appl Phys, Vol. 101 (2007), p.23709.

Google Scholar