Hydroxyapatite Crystals Grown on Ti MAO Film by Hydrothermal Treatment

Article Preview

Abstract:

Hydroxyapatite crystals of various morphologies were grown on Ti-6Al-4V plates using Micro-arc oxidation (MAO) plus hydrothermal treatment. Phase identification was carried out by XRD. The mechanisms by which these HA crystals form is here discussed. It was deduced that HA formation depended on the degree of supersaturation of Ca and P ions in the treated solution. Various hydrothermal treatments with different degrees of supersaturation were designed and performed. Crystals with flake, needle-like, hexagonal column, and composite morphologies were obtained. The formation of different HA morphologies is discussed in terms of growth mechanisms. The effects of the degree of supersaturation of Ca and P ions on the morphologies of hydroxyapatite crystals are illustrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

571-576

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Overgaard, Calcium phosphate coating for fixation of bone implants. Acta Orthop Scand 71 (2000) 1–74.

Google Scholar

[2] K. Soballe, E.S. Hansen, H.B. Rasmussen, P.H. Jorgensen, C. Bunger, Tissue in growth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 10 (1992) 85–99.

DOI: 10.1002/jor.1100100216

Google Scholar

[3] R.Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates, Clin Orthop Relat Res 395(2002) 81–98.

DOI: 10.1097/00003086-200202000-00009

Google Scholar

[4] M. Cavalli, G. Gnappi, A. Montenero, D. Bersani, P.P. Lottici, S. Kaciulis, Hydroxy-and fluorapatite films on Ti alloy substrates: sol-gel preparation and characterization. Journal of Materails Science 32 (2001) 53–60.

DOI: 10.1023/a:1017998722380

Google Scholar

[5] L. Sun, C.C. Berndt, K.A. Gross, A. Kucuk, Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review, J Biomed Mater Res B 58(2001)70–92.

DOI: 10.1002/jbm.1056

Google Scholar

[6] H.B. Wen, de Wijn JR, Cui FZ, de Groot K. Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry. J. Biomed Mater Res 41 (1998) 27–36.

DOI: 10.1002/(sici)1097-4636(199808)41:2<227::aid-jbm7>3.0.co;2-k

Google Scholar

[7] L.H. Li, Y.M. Kong, H.W. Kim, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials 25 (2004) 2867-2875.

DOI: 10.1016/j.biomaterials.2003.09.048

Google Scholar

[8] W.H. Song, Y.K. Jun, Y. Han, S.H. Hong, Biomimetic apatite coatings on microarc oxidized titania, Biomaterials 25 (2004) 3341-3349.

DOI: 10.1016/j.biomaterials.2003.09.103

Google Scholar

[9] X.L. Zhu, K.H. Kim, Y.S. Jeong, Anodic oxide films containing Ca and P of titanium biomaterial, Biomaterials 22 (2001) 2199-2206.

DOI: 10.1016/s0142-9612(00)00394-x

Google Scholar

[10] K. Ioku, G. Kawachi, S. Sasaki, H. Fujimori, S. Goto, Hydrothermal preparation of tailored hydroxyapatite, Journal of Materials Science 41(2006) 1341-1344.

DOI: 10.1007/s10853-006-7338-5

Google Scholar

[11] A.N. Vasiliev, E. Zlotnikov, J.G Khinast, R.E. Riman, Chemisorptions of silane compounds on hydroxyapatites of various morphologies, Scripta Materialia 58(2008) 1039-1042.

DOI: 10.1016/j.scriptamat.2007.12.014

Google Scholar

[12] R.K. Roeder, M.M. Sproul, C.H. Turner, Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites, Journal of Biomedical Materials Research - Part A 67(2003) 801-812.

DOI: 10.1002/jbm.a.10140

Google Scholar

[13] F. A. Müller, U. Gbureck, T. Kasuga, Y. Mizutani, J.E. Barralet, U. Lohbauer, Whisker-reinforced calcium phosphate cements, Journal of the American Ceramic Society 90 (2007) 3694-3697.

DOI: 10.1111/j.1551-2916.2007.01967.x

Google Scholar

[14] H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, Preparation of bioactive Ti and its alloys via simple chemical surface treatment, J.Biomed. Mater. Res. 32 (1996) 409-417.

DOI: 10.1002/(sici)1097-4636(199611)32:3<409::aid-jbm14>3.0.co;2-b

Google Scholar

[15] K.L. Lin, J. Cheng, R.M. Chen, M.L. Ruan, Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Materials Letters 61 (2007) 1683-1687.

DOI: 10.1016/j.matlet.2006.07.099

Google Scholar

[16] J.C. Elliot, Structure, chemistry of apatites and other calcium orthophosphates. Amsterdam: Elsevier, 1994 p.157.

Google Scholar