[1]
S. Overgaard, Calcium phosphate coating for fixation of bone implants. Acta Orthop Scand 71 (2000) 1–74.
Google Scholar
[2]
K. Soballe, E.S. Hansen, H.B. Rasmussen, P.H. Jorgensen, C. Bunger, Tissue in growth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 10 (1992) 85–99.
DOI: 10.1002/jor.1100100216
Google Scholar
[3]
R.Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates, Clin Orthop Relat Res 395(2002) 81–98.
DOI: 10.1097/00003086-200202000-00009
Google Scholar
[4]
M. Cavalli, G. Gnappi, A. Montenero, D. Bersani, P.P. Lottici, S. Kaciulis, Hydroxy-and fluorapatite films on Ti alloy substrates: sol-gel preparation and characterization. Journal of Materails Science 32 (2001) 53–60.
DOI: 10.1023/a:1017998722380
Google Scholar
[5]
L. Sun, C.C. Berndt, K.A. Gross, A. Kucuk, Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review, J Biomed Mater Res B 58(2001)70–92.
DOI: 10.1002/jbm.1056
Google Scholar
[6]
H.B. Wen, de Wijn JR, Cui FZ, de Groot K. Preparation of calcium phosphate coatings on titanium implant materials by simple chemistry. J. Biomed Mater Res 41 (1998) 27–36.
DOI: 10.1002/(sici)1097-4636(199808)41:2<227::aid-jbm7>3.0.co;2-k
Google Scholar
[7]
L.H. Li, Y.M. Kong, H.W. Kim, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials 25 (2004) 2867-2875.
DOI: 10.1016/j.biomaterials.2003.09.048
Google Scholar
[8]
W.H. Song, Y.K. Jun, Y. Han, S.H. Hong, Biomimetic apatite coatings on microarc oxidized titania, Biomaterials 25 (2004) 3341-3349.
DOI: 10.1016/j.biomaterials.2003.09.103
Google Scholar
[9]
X.L. Zhu, K.H. Kim, Y.S. Jeong, Anodic oxide films containing Ca and P of titanium biomaterial, Biomaterials 22 (2001) 2199-2206.
DOI: 10.1016/s0142-9612(00)00394-x
Google Scholar
[10]
K. Ioku, G. Kawachi, S. Sasaki, H. Fujimori, S. Goto, Hydrothermal preparation of tailored hydroxyapatite, Journal of Materials Science 41(2006) 1341-1344.
DOI: 10.1007/s10853-006-7338-5
Google Scholar
[11]
A.N. Vasiliev, E. Zlotnikov, J.G Khinast, R.E. Riman, Chemisorptions of silane compounds on hydroxyapatites of various morphologies, Scripta Materialia 58(2008) 1039-1042.
DOI: 10.1016/j.scriptamat.2007.12.014
Google Scholar
[12]
R.K. Roeder, M.M. Sproul, C.H. Turner, Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites, Journal of Biomedical Materials Research - Part A 67(2003) 801-812.
DOI: 10.1002/jbm.a.10140
Google Scholar
[13]
F. A. Müller, U. Gbureck, T. Kasuga, Y. Mizutani, J.E. Barralet, U. Lohbauer, Whisker-reinforced calcium phosphate cements, Journal of the American Ceramic Society 90 (2007) 3694-3697.
DOI: 10.1111/j.1551-2916.2007.01967.x
Google Scholar
[14]
H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, Preparation of bioactive Ti and its alloys via simple chemical surface treatment, J.Biomed. Mater. Res. 32 (1996) 409-417.
DOI: 10.1002/(sici)1097-4636(199611)32:3<409::aid-jbm14>3.0.co;2-b
Google Scholar
[15]
K.L. Lin, J. Cheng, R.M. Chen, M.L. Ruan, Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Materials Letters 61 (2007) 1683-1687.
DOI: 10.1016/j.matlet.2006.07.099
Google Scholar
[16]
J.C. Elliot, Structure, chemistry of apatites and other calcium orthophosphates. Amsterdam: Elsevier, 1994 p.157.
Google Scholar