Synthesis of Nano-Sized FePO4 Cathode Material via a Microemulsion Technique

Article Preview

Abstract:

A novelsynthetic method is developed to prepare nano-sized FePO4 powdersused as cathode materials of lithium ion batteries. The samples are preparedvia a microemulsion system in a H2O/cyclohexane/Triton x-100/n-butylalcohol, and then sinter at different temperatures (380°C,460°C,550°C,650°C)for 3h. The thermal stability,structure,morphology and particle size are investigated by means of TG/DSC, X-raydiffraction (XRD), field emission-scanning electron microscopy (FE-SEM), andthe electrochemical properties are characterized by cyclic voltammetry (CV) andgalvanostatic charge and discharge tests. Results show the grain size of FePO4particles sintered at 460°C and 380°C for 3h ranges from 10nm to 20nm, and thecrystal structure is amorphous. The initial discharge specific capacity of FePO4cathode sintered at 460°C for 3h reaches 139mAhg-1 and 110mAh/g,respectively, at 0.1C and 0.3C. Increasing sintering temperature leads to thesmall particles agglomeration and the crystalline growth, and the crystalstructure changes from amorphous to trigonal when the sintering temperature isup to 550°C. The discharge specific capacity also decreases with the increase ofthe sintering temperature. These results suggest that nano-sized particles andamorphous structure can significantly improve the performances of FePO4cathode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

675-682

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kim J K, Choi J W, Cheruvally G, et al.,Materials Letters 61(2007) 3822.

Google Scholar

[2] Z. Chen, H. Zhu, W. Zhu, et al., Trans. of Nonferrous Metals Society of China 20 (2010) 614.

Google Scholar

[3] A. K. Padhi, K. S. Najundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.

Google Scholar

[4] Y. Wang, G. Cao, Advanced Materials 20 (2008) 2251.

Google Scholar

[5] M. S. Whittingham, Chemical Reviews 104 (2004) 4271.

Google Scholar

[6] D. Jugovic, D. Uskokovic. J. Power Sources 190 (2009) 538.

Google Scholar

[7] W. Zhang, J. Power Sources 196 (2010) 2962.

Google Scholar

[8] H. S. Kim, B. W. Cho, W. Cho. J. Power Sources. 132 (2004) 235.

Google Scholar

[9] A. Kahoul, A. Hammouche, Chemistry and Materials Science 16 (2009) 105.

Google Scholar

[10] M. Sato, S. Tajimi, H. Okawa, Solid State Ionics 152 (2002) 247.

Google Scholar

[11] Y. Song, S. Yang, P.Y. Zavalij, et al., Mater. Res. Bull 4 (2002) 239-244.

Google Scholar

[12] C. Masquelier, P. Reale, C. Wurm, M. Morcrette, L. Dupont, D. Larcher, J. Electrochem. Soc. 149 (2002) A 1037.

Google Scholar

[13] S. Okada, T. Yamamoto, Y. Okazaki, J.I. Yamaki, M. Tokunaga, T. Nishida, J. Power Sources 146 (2005) 570.

DOI: 10.1016/j.jpowsour.2005.03.200

Google Scholar

[14] Y. Song, S. Yang, P.Y. Zavalij, M.S. Whittingham, Mater. Res. Bull. 37 (2002)1249.

Google Scholar

[15] P.P. Prosini, M. Lisi, S. Scaccia, M. Carewska, F. Cardellini, M. Pasquali, J. Electrochem. Soc. 149 (2002) A297.

DOI: 10.1149/1.1435359

Google Scholar

[16] Y.S. Hong, K.S. Ryu, Y.J. Park, M.G. Kim, J.M. Lee, S.H. Chang, J. Mater. Chem. 12 (2002) 1870.

Google Scholar

[17] Y. Xu, Y. Lu, P. Yin, L. J. materials processing technology 204 (2008) 513.

Google Scholar

[18] Z. C. Shi, A. Attia, W. L.Ye, et al., Electrochim. Acta 53 (2008) 2665.

Google Scholar

[19] F. Croce, A. D'Epiffanio, P. Reale, et al., J. Electrochem. Soc. 150(2003) A576.

Google Scholar

[20] Z. Shi, I. Li, W.Ye, Y. Yang, Electrochem. Solid State Lett. 8 (2005) A396.

Google Scholar

[21] X.Yang, S.M. Zhang, J.X. Zhang, Functional Materials Letters (in press).

Google Scholar

[22] Y. J. Yin, Y. J. Hu, P. Wu, H. Zhang, C. X. Cai. Chem. Commun.48 (2012) 2137-2139.

Google Scholar

[23] Y. J. Lee, A. M. Belcher, J. Mater. Chem. 21 (2011) 1033-1039.

Google Scholar

[24] S. W. Kim, J. K. Ryu, C. B. Park, K. Kang, Chem. Commun. 46 (2010) 7409-7411.

Google Scholar

[25] N. Rajic, R. Gabrovsek, V. Kaucic, thermochim. Acta 359 (2000) 119.

Google Scholar

[26] Song y, Peter y, Suzuki M, et al., Inorganic chemistry, 41(2002) 5778.

Google Scholar

[27] D.Morgan, A.van der wen, and G. Ceder, Electrochem.Solid-state Lett.7 (2004) A30.

Google Scholar

[28] W. J. Cui, H. J. Liu, et al., Electrochemistry Communications 10 (2008) 1587.

Google Scholar