Carboxylic Graphene-Supported Platinum and Platinum-Palladium Nanoparticles with High Electrocatalytic Activity for Methanol Oxidation

Article Preview

Abstract:

Pt, Pd and Pt-Pd nanoparticles (NPs) were synthesized on carboxylic graphene (CGR) sheets. The nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR) and UVvis absorption spectroscopy. Their electrocatalytic activity for methanol oxidation was also investigated. The results showed the peak current density of methanol oxidation of Pt NPs-Graphite oxide (GO), Pd NPs-CGR, Pt NPs-CGR and Pt-Pd NPs-CGR is 12.2μA/cm2, 14.1μA/cm2, 15.1μA/cm2 and 21.5μA/cm2 respectively. The nanocomposite of CGR as catalyst supports and Pt-Pd NPs as catalyzers is promising for direct methanol fuel cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

670-674

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.H. Lin, X.L. Cui, C.H. Yen, C.M. Wai: Langmuir,Vol. 21 (2005) , p.11474.

Google Scholar

[2] T. Maiyalagan, B. Viswanathan, U.V. Varadaraju: Electrochem Commun, Vol. 7(2005), p.905.

Google Scholar

[3] Y.L. Guo, Y.Z. Zheng, M.H. Huang: Electrochim Acta, Vol. 53(2008), p.3102.

Google Scholar

[4] M.C. Tsai, T.K. Yeh, i C.H. Tsa: Electrochem Commun, Vol. 8 (2006), p.1445.

Google Scholar

[5] C.C. Chen, C.F. Chen, C.M. Chen, F.T. Chuang: Electrochem Commun, Vol. 9 (2007), p.159.

Google Scholar

[6] V. Selvaraj, M. Alagar: Electrochem Commun, Vol. 9 (2007), p.1145.

Google Scholar

[7] T. Maiyalagan: Appl Catal B: Environ, Vol. 80(2008), p.286.

Google Scholar

[8] B. Rajesh, K.R. Thampi, J.M. Bonard, N. Xanthopoulos, H.J. Mathieu, B. Viswanathan: J Phys Chem B, Vol. 107(2003), p.2701.

Google Scholar

[9] H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, et al: Carbon,Vol. 42 (2004), p.191.

Google Scholar

[10] X.S. Zhao, W.Z. Li, L.H. Jiang, W.J. Zhou, Q. Xin, B.L. Yi, et al: Carbon ,Vol. 42 (2004), p.3263.

Google Scholar

[11] G. Girishkumar, T.D. Hall, K. Vinodgopal, P.V. Kamat:J Phys Chem B,Vol. 110 (2006), p.107.

Google Scholar

[12] A. Halder, S. Sharma, M.S. Hegde, N. Ravishankar: J Phys Chem C, Vol. 113(2009), p.1466.

Google Scholar

[13] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al: Science, Vol. 306(2004), p.666.

Google Scholar

[14] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. CGRigorieva, et al: Nature Vol. 438(2005), p.197.

Google Scholar

[15] Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim. Nature,Vol. 438(2005), p.201.

Google Scholar

[16] B. Seger, P.V. Kamat: J Phys Chem C ,Vol. 113(2009), p.7990.

Google Scholar

[17] E.J. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma: Nano Lett ,Vol. 9(2009), p.2255.

DOI: 10.1021/nl900397t

Google Scholar

[18] W. S. Hummers, R. E. Offeman: J. Am. Chem. Soc., Vol. 80 (1958), p.1339.

Google Scholar

[19] X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric and H.J. Dai: Nano Res., Vol. 1 (2008), P. 203.

Google Scholar

[20] S. Stankovich, D.A. Dikin, R.D. Piner, Carbon, Vol. 45 (2007), p.1558.

Google Scholar

[21] Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, P.M. Ajayan, Carbon,Vol.48 (2010), p.1124.

Google Scholar