[1]
M. Fillippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral methods for clustering. Pattern Recognition, Vol.41, No.1 (2008), pp.176-190.
DOI: 10.1016/j.patcog.2007.05.018
Google Scholar
[2]
A.K. Jain, M.N. Murty, P.J. Flyn, Data clustering: a review. ACM Computing Surveys, Vol.31, No.3 (1999), pp.256-323.
Google Scholar
[3]
R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE Transactions on Neural Net-works, Vol.16, No.3 (2005), pp.645-678.
Google Scholar
[4]
J.T. Tou, R.C. Gonzalez, Pattern recognition principles. Addison-Wesley, London (1974).
Google Scholar
[5]
J.C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981).
Google Scholar
[6]
D.W. Kim, K.Y. Lee, D. Lee, K.H. Lee, A kernel-based subtractive clustering method. Pattern Recognition Letters, Vol.26, No.7 (2005), pp.879-891.
DOI: 10.1016/j.patrec.2004.10.001
Google Scholar
[7]
T.M. Martinetz, S.G. Berkovich, K.J. Schulten, Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, Vol.4, No.4, (1993), pp.558-569.
DOI: 10.1109/72.238311
Google Scholar
[8]
F. Camastra, A. Verri, A novel kernel method for clustering. IEEE Transactions on Pattern Ana- lysis and Machine Intelligence, Vol.27, No.5, (2005), pp.801-805.
DOI: 10.1109/tpami.2005.88
Google Scholar
[9]
J. Ghosh, A. Acharva, Cluster ensembles. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol.1, No.4, (2011), pp.305-315.
Google Scholar
[10]
A. Strehl, J. Ghosh, Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, Vol.3, (2003), pp.583-617.
Google Scholar
[11]
L. Gu, F.C. Sun, Two novel kernel-based semi-supervised clustering methods by seeding. In Proceedings of the 2009 Chinese Conference on Pattern Recognition, (2009).
DOI: 10.1109/ccpr.2009.5344157
Google Scholar
[12]
P. Wolfe, A duality theorem for nonlinear programming. Q. Appl. Math., 19 (1961), pp.239-244.
Google Scholar
[13]
H.W. Kukn, A.W. Tucker, Nonlinear programming. In Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, (1951), pp.481-492.
Google Scholar
[14]
M. Bicego, M.A.T. Figueiredo, Soft clustering using weighted one-class support vector machines. Pattern Recognition, Vol.42, No.1 (2009), pp.27-32.
DOI: 10.1016/j.patcog.2008.07.004
Google Scholar
[15]
UCI Machine Learning Repository: http://www.ics.uci.edu/~mlearn/MLSummary.html.
Google Scholar