[1]
A.K. Jain, M.N. Murty, P.J. Flyn, Data clustering: a review. ACM Computing Surveys, Vol.31, No.3 (1999), pp.256-323.
Google Scholar
[2]
R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE Transactions on Neural Net-works, Vol.16, No.3 (2005), pp.645-678.
Google Scholar
[3]
J.T. Tou, R.C. Gonzalez, Pattern recognition principles. Addison-Wesley, London (1974).
Google Scholar
[4]
J.C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981).
Google Scholar
[5]
R. Krishnapuram, A. Joshi, O. Nasraoui, L. Yi, Low complexity fuzzy relational clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems, Vol.9, No.4, (2001), pp.595-607.
DOI: 10.1109/91.940971
Google Scholar
[6]
L. Kaufman, P.J. Rousseeuw, Finding groups in data: an introduction to cluster analysis. John Wiley & Sons, New York (1990).
Google Scholar
[7]
T.M. Martinetz, S.G. Berkovich, K.J. Schulten, Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, Vol.4, No.4, (1993), pp.558-569.
DOI: 10.1109/72.238311
Google Scholar
[8]
B. Zhang, M. Hus, U. Dayal, K-harmonic means-a data clustering algorithm. Technical Report HPL-1999-124, Hewlett-Packard Laboratories, (1999).
Google Scholar
[9]
B. Zhang, M. Hus, U. Dayal, K-harmonic means. In Proceedings of International Workshop on Temporal, Spatial and Spatio-temporal data mining, Lyon, France, (2000).
Google Scholar
[10]
F.Q. Yang, T.L. Sun, C.H. Zhang, An efficient hydrid data clustering method based on k- harmonic means and particle swarm optimization. Expert Systems with Applications, Vol.36, No.6, (2009), pp.9847-9852.
DOI: 10.1016/j.eswa.2009.02.003
Google Scholar
[11]
C. Hammerly, C. Elkan, Alternative to the k-means algorithm that find better clusterings. In Proceedings of the 11th International Conference on Information and Knowledge Management, (2002), pp.600-607.
DOI: 10.1145/584792.584890
Google Scholar
[12]
C. Ormella, M. Anastasios, S. Sandhya, K. Don, L. Sijia, K.M. Philip, E. Radek, DifFUZZY: a fuzzy clustering algorithm for complex datasets. International Journal of Computational Intel- ligence in Bioinformatics and Systems Biology, Vol.1, No.4, (2010), pp.402-417.
Google Scholar
[13]
UCI Machine Learning Repository, http://www.ics.uci.edu/~mlearn/MLSummary.html.
Google Scholar