Fault Tolerant Stabilizing Controller for a Quadrotor UAV

Article Preview

Abstract:

Quadrotors are becoming very popular because of their potential to be applied in a large variety of missions. In order to increase their reliability when actuator faults are present a fault tolerant stabilizing controller is designed. The presented approach can handle multiple actuator faults without needing to identify them. The effectiveness of the controller is demonstrated by carrying out numerical simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1215-1220

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Bouabdallah, P. Murrieri, R. Siegwart. Design and control of an indoor micro quadrotor. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA '04). New Orleans, LA. April 2004, volume 5, pp.4393-4398.

DOI: 10.1109/robot.2004.1302409

Google Scholar

[2] S. Bouabdallah, R. Siegwart. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA '05). Barcelona, Spain. April 2005, pp.2247-2252.

DOI: 10.1109/robot.2005.1570447

Google Scholar

[3] B. Erginer, E. Altuğ. Modeling and PD control of a quadrotor VTOL vehicle. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul, Turkey. June 2007, pp.894-899.

DOI: 10.1109/ivs.2007.4290230

Google Scholar

[4] I. C. Dikmen, A. Arısoy, H. Temeltaş. Flight control of a VTOL air vehicle (quadrotor). Havacılık ve Uzay Teknolojileri Dergisi. 2010, 4 (3): 33-40. In Turkish.

Google Scholar

[5] H. Huang, G. M. Hoffmann, S. L.Waslander, C. J. Tomlin. Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In: 2009 IEEE International Conference on Robotics and Automation (ICRA '09). Kobe, Japan. May 2009, pp.3277-3282.

DOI: 10.1109/robot.2009.5152561

Google Scholar

[6] P. Castillo, R. Lozano, A. E. Dzul. Modelling and Control of Mini-Flying Machines. Springer-Verlag, London, U.K., 2005.

Google Scholar

[7] F. Sharifi, M. Mirzaei, B. W. Gordon, Y. Zhang. Fault tolerant control of a quadrotor UAV using sliding mode control. In: Conference on Control and Fault-Tolerant Systems (SysTol). Nice, France. October 2010, pp.239-244.

DOI: 10.1109/systol.2010.5675979

Google Scholar

[8] A. Freddi, S. Longhi, A. Monteriù. Actuator fault detection system for a mini-quadrotor. In: 2010 IEEE International Symposium on Industrial Electronics (ISIE). Bari, Italy. July 2010, pp.2055-2060.

DOI: 10.1109/isie.2010.5637750

Google Scholar

[9] M. A. O. Alves Jr, E. G. O. Nobrega, T. Yoneyama. Adaptive neural control for a tolerant fault system. In: Preprints of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes. Barcelona, Spain. 2009, pp.137-142.

DOI: 10.3182/20090630-4-es-2003.00023

Google Scholar

[10] H. A. Izadi, B. W. Gordon, Y. Zhang. A data-driven fault tolerant model predictive control with fault identification. In: Conference on Control and Fault-Tolerant Systems (SysTol). Nice, France. October 2010, pp.732-737.

DOI: 10.1109/systol.2010.5675981

Google Scholar

[11] V. G. Adîr, A. M. Stoica, A. Marks, J. F. Whidborne. Modelling, stabilization and single motor failure recovery of a 4Y octorotor. In: Proceedings of the IASTED International Conference of Intelligent Systems and Control (ISC 2011). Cambridge, United Kingdom. July 2011, pp.82-87.

DOI: 10.2316/p.2011.744-070

Google Scholar

[12] N. P. I. Aneke. Control of Underactuated Mechanical Systems. Technische Universiteit Eindhoven, Eindhoven, 2003.

Google Scholar