Intricacy of the Transit Manifold Concept Paid-off by Computational Accuracy

Article Preview

Abstract:

Despite its intricacy the numerical method applied within the TRANSIT code proved successful in describing discontinuous, non-isentropic flows in rocket engines and solar-gravitational towers for green energy. A number of 0-D approaches are known to render some results in demonstrating the feasibility of the solar tower concept, or in unsteady simulation of transient phases in rocket engines. Computational efficiency is demonstrated by CFD simulation of the starting transients in ADDA solid rocket engines and in the SEATTLER solar mirror tower. The code is exclusively directed to unsteady flow simulations in slender channels. The wave front model scheme covers the dual behavior of fully non-isentropic flow with mass addition and mixing in the thrust chamber or blunt heat addition in a heater and fully isentropic through the exhaust nozzle or gravity draught in a tall tower. Along the tower of the solar-gravity draught power plants small perturbation discontinuous flows are covered. Code robustness is demonstrated during runs on the PC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-147

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zannetti, L., Favini, B., "Wave Propagation Phenomena as Tools for the Study of Inviscid Compressible Flows", Proc. High Speed Aerodynamics II Symposium, ed. A. Nastase, Aachen, Germany, 1990.

Google Scholar

[2] Rugescu, R. D., "Modeling of one-dimensional unsteady flows in rocket engines", Revue Roumaine des Sciences Techniques-Mecanique Appliquee, 46, 1-6(2001), pp.97-109.

Google Scholar

[3] Rugescu, R. D., Avasilichioaiei, D., "A Method of Characteristics Approach for Nonisentropic Transients in Rocket Engines", Scientific Bulletin of the University "Politehnica" of Bucharest, series D, Mechanical Engineering, 61, 3-4(1999), pp.311-324.

Google Scholar

[4] Rugescu R. D., Thermische Turbomaschinen, ISBN 973-30-1846-5, Ed. D. P. Bucharest, Ch.7, 2005.

Google Scholar

[5] Rugescu, R. D., Chiciudean, T. G., Toma, A. C., Tache, F., "Thermal Draught Driver Concept and Theory as a Tool for Advanced Infra-Turbulence Aerodynamics", in DAAAM International Scientific Book 2005, ISBN 3-901509-43-7, B. Katalinic (Ed.), Viena, pp.543-557.

DOI: 10.2507/daaam.scibook.2006.42

Google Scholar

[6] Tache, F., Rugescu, R. D., Slavu, B., Chiciudean, T. G., Toma, A. C., Galan, V. "Experimental Demonstrator of the Draught Driver for Infra-Turbulence Aerodynamics", Annals of DAAAM for 2006 & Proceedings of the 17th International DAAAM Symposium, ISSN 1726-9679 ISBN 3-901509-57-7, Editor B. Katalinic, Published by DAAAM International, Vienna, Austria 2006, pp.409-410.

DOI: 10.2507/daaam.scibook.2006.42

Google Scholar

[7] Rugescu, R. D., Tache, F., Chiciudean, T. G., Toma, A. C., Slavu, B., Galan, V. "Project SEATTLER for Renewable Electricity", Chapter 42 in DAAAM International Scientific Book 2006, B. Katalinic (Ed.), DAAAM International, ISBN: 3-901509-43-7, ISSN 1726-9687, Viena, Austria, 2006, pp.523-538.

DOI: 10.2507/daaam.scibook.2006.42

Google Scholar

[8] Haaf, W., "Solar Chimneys, Part II: Preliminary Test Results from the Manzanares Pilot Plant," Int. J. Sol. Energy, 2 (1984), p.141–161.

DOI: 10.1080/01425918408909921

Google Scholar

[9] Weinrebe G. (2004), Das Aufwindkraftwerk-Wasserkraftwerk der Wüste, Nova Acta Leopoldina NF91, Nr.339, pp.117-141.

Google Scholar

[10] Schlaich J., Bergermann R., Schiel W., Weinrebe G. (2004), Design of Commercial Solar Updraft Tower Systems – Utilization of Solar Induced Convective Flows for Power Generation, Commercial Solar Towers JSEE Rev.C2.

DOI: 10.1115/isec2003-44057

Google Scholar

[11] Günter, H., In hundert Jahren – Die künftige Energieversorgung der Welt, Kosmos, Gesellschaft der Naturfreunde, Franckh'sche Verlagshandlung, Stuttgart, 1931.

DOI: 10.1002/jobm.19650050511

Google Scholar

[12] Muston, William Edwin, W. C., Duesterhoeft, Jr., Woodson, Herbert H., Analog simulation of a steam turbine and governor, Technical Report, Energy Systems Laboratories, University of Texas at Austin, ESL-28, 1974.

Google Scholar

[13] Herrmann, U., The influence of transients on the design of DSG solar fields, Journal de Physique IV, 9(P3)(new 62), Mar. 1999, pp.489-494.

DOI: 10.1051/jp4:1999377

Google Scholar

[14] Pretorius J. P., Solar Chimney Power Plant Performance, ASME Journal of Solar Energy Engineering, ISSN 0199-6231, Aug. 2006, Vol. 128 Issue 3, pp.302-311.

DOI: 10.1115/1.2210491

Google Scholar

[15] Gannon, A. J., Von Backström, T. W., Solar Chimney Turbine Performance, ASME Journal of Solar Energy Engineering, 125, 2003, pp.101-106.

DOI: 10.1115/1.1530195

Google Scholar

[16] Feidt, M., Costea, M., Petre, C., Boussehain, R., Génie Energétique Appliqué au solaire; Energie Solaire Thermique, Editura Printech, 2004, ISBN 973-718-092-5 (115 pages en français).

Google Scholar

[17] Rugescu, R. D., "Technology of CFD in space engines and solar-gravitational power plants", International Journal on Energy Technology and Policies, ISSN 1472-8923, On-line ISSN 1741-508X, 6, 1-2(2008), pp.124-142.

DOI: 10.1504/ijetp.2008.017033

Google Scholar