[1]
M.E. El-hawary and G.S. Christtensen: Optimal economic operation of electric power system. New York, NY, US. Academic Press (1979).
Google Scholar
[2]
ZHANG Boming, WU Wenchuan, ZHENG Taiyi, et al: Design of a multi-time scale coordinated active power dispatching system for accommodating large scale wind power penetration. Automation of Electric Power Systems. 35 (1). (2011),pp.1-6
DOI: 10.1109/pesgm.2012.6344832
Google Scholar
[3]
SHEN Wei, WU Wenchuan, ZHANG Boming, ZHENG Taiyi and SUN Hongbin: An on-line rolling dispatch method and model for accommodating large-scale wind power. Automation of Electric Power Systems.35 (22). (2011),p.136
DOI: 10.1109/powercon.2010.5666420
Google Scholar
[4]
R.R. Shoults, S.K. Chang, S. Helmick, et al: A practical approach to unit commitment, economic dispatch, and savings allocation for multiple-area pool operation with import/export constrains. IEEE Trans on Power Apparatus and Systems. 99(2). (1980), pp.625-635
DOI: 10.1109/tpas.1980.319654
Google Scholar
[5]
Tseng Chung-li, S.O. Shmuel, A.J. Svoboda, et al: A unit decommitment method in power system scheduling. Electrical Power and Energy Systems. 19(6). (1997), pp.357-365
DOI: 10.1016/s0142-0615(96)00055-5
Google Scholar
[6]
C. Wang, S.M. Shahidepour: A decomposition approach to non-linear multi-area generation scheduling with tie-line constraints using expert systems. IEEE Trans on Power Systems. 19(6). (1992), pp.1409-1418
DOI: 10.1109/59.207362
Google Scholar
[7]
WANG Mingliang, ZHANG Boming, XIA Qing: A novel unit commitment method considering various operation constraints. Automation of Electric Power Systems. 24(12). (2000), pp.29-35
DOI: 10.1109/pesw.2000.847621
Google Scholar
[8]
O. Weerakorn, P. Nit: Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Trans on Power Systems. 19(1). (2004), pp.620-628
DOI: 10.1109/tpwrs.2003.820707
Google Scholar
[9]
F. Antonio, G. Claudio. Solving nonlinear single-unit commitment problems with ramping constrains. Operations Research. 54(4). (2006), pp.767-775
DOI: 10.1287/opre.1060.0309
Google Scholar
[10]
F. Antonio, G. Claudio, L. Fabrizio: Solving unit commitment problems with general ramp constrains. Electrical Power and Energy Systems. 30(5). (2008), pp.316-326
DOI: 10.1016/j.ijepes.2007.10.003
Google Scholar
[11]
A. Bakirtzis, V. Petridis, S. Kazarlis: Genetic algorithm solution to the economic dispatch problem. IEEE Proceedings: Generation, Transmission and Distribution. 141(4). (1994), pp.377-382
DOI: 10.1049/ip-gtd:19941211
Google Scholar
[12]
C.L. Chen: Simulated anneal-based optimal wind-thermal coordination scheduling. IET Generation, Transmission and Distribution. 1(3). (2007), pp.447-455
DOI: 10.1049/iet-gtd:20060208
Google Scholar
[13]
A.I. Selvakumar, K. Thanushkodi: A new particle swarm optimization solution to nonconvex economic dispatch problems. 22(1). (2007), pp.42-51
DOI: 10.1109/tpwrs.2006.889132
Google Scholar
[14]
L.S. Coelho, V.C. Mariani: Combining of chaoic differential evolution and quadratic programming for economic dispatch optimization with value-point effect. 21(2). (2006), pp.989-996
DOI: 10.1109/tpwrs.2006.873410
Google Scholar