[1]
Dobson I. Strong Resonance Effects in Normal form Analysis and Sub Synchronous Resonance. Bulk Power System Dynamics and Control V, August 26-31, 2001, Japan, 2001: 563-574.
Google Scholar
[2]
ZHUANG Huimin, XIAO Jian. Saddle-node Bifurcation Analysis of Voltage Stability of AC/DC Power Systems. Power System Technology, 2008, 08(32):29-34.
Google Scholar
[3]
Starrett S K, Fouad A A. Nonlinear measures of mode-machine participation [transmission system stability. IEEE Transactions on Power Systems, 1998, 13(2): 389-394.
DOI: 10.1109/59.667357
Google Scholar
[4]
XU Dongjie, HE Renmu, HU Guo-qiang, et al. Analysis of Low Frequency Oscillations Using Normal Form Method. Proceedings of the CSEE, 2004, 24(3):18-23.
DOI: 10.1109/drpt.2004.1338483
Google Scholar
[5]
Dobson I. and E. Barocio. Scaling of Normal form Analysis Coefficients Under Coordinate Change. IEEE Trans on Power Systems, 2004, 19(3): 1438-1444.
DOI: 10.1109/tpwrs.2004.831691
Google Scholar
[6]
Amano, H. and T. Inoue. Normal form Analysis of Auto-parametric Resonance in Longitudinal Power System. 37th North American Power Symposium Proceedings. 2005, IEEE: New York: 538-544.
DOI: 10.1109/naps.2005.1560585
Google Scholar
[7]
Dobson and E. Barocio. Perturbations of Weakly Resonant Power System Electromechanical Modes. IEEE Trans on Power Systems, 2005. 20(1):330-337.
DOI: 10.1109/tpwrs.2004.841242
Google Scholar
[8]
Betancourt R J, Barocio E, Arroyo J, et al. A Real Normal Form Approach to the Study of Resonant Power Systems. IEEE Trans on Power Systems, 21(1), 2006:431- 432.
DOI: 10.1109/tpwrs.2005.860940
Google Scholar
[9]
Songzhe Z, Vittal V, Kliemann W. Analyzing Dynamic Performance of Power Systems Over Parameter Space Using Normal Forms of Vector Fields-part I: Identification of Vulnerable Regions. IEEE Trans on Power Systems, 2001, 16(3): 444-450.
DOI: 10.1109/59.932280
Google Scholar
[10]
LI Hongzhong, CHeng Haozhong, TENG Letian, et al. A Direct Method for Computing Hopf Bifurcation Point in Power System. Proceedings of the CSEE, 2006, 26(8): 28-32.
Google Scholar
[11]
YANG Xiaoyu, ZHOU Xiaoxin. Calculation of the Critical Points of Static Voltage Stability With Minimally Extended System Method. Proceedings of the CSEE, 2009.25 (09): 32-36.
Google Scholar
[12]
WANG Qinghong, ZHOU Shuangxi, HU Guogen. Tracing of Singularity Induced Bifurcation in Power System Differential Algebraic Equation Model and Its Theoretical Analysis. Power System Technology, 2003, 27(11):13-17.
Google Scholar
[13]
YANG Zhonghua. Nonlinear Differences: Theory and Calculation, Beijing: Science Press.29-32.
Google Scholar
[14]
LU Qishao. Bifurcation and Singularity. Shanghai Scientifically and Technological Education Publishing House, Shanghai, 1995: 54-64.
Google Scholar
[15]
Der-Cherng L,Kuan-Hsun F, Chau-Chung, Song. Bifurcation Analysis of Power Systems with Tap Changer. IEEE International Conference on Networking, Sensing and Control, 2005, 10(92): 283-288.
DOI: 10.1109/icnsc.2005.1461202
Google Scholar