Different Electrodeposition Behaviors of Ni-Co Binary Coatings in Sulphate and Chloride Baths

Article Preview

Abstract:

Ni-Co binary coatings with different compositions were electrodeposited from sulphate and chloride baths at room temperature without stirring, respectively. The different codeposition behaviors of the coatings deposited from sulphate and chloride with the same mole ratio of Ni2+/Co2+ were studied and anomalous codeposition was investigated in both the sulphate and chloride baths. The Co atom content in the coatings deposited from chloride bath and sulphate bath increases with the mole ratio of Co2+/Ni2+ in the baths increasing. The degree of anomalous codeposition in the sulphate bath is higher than that in chloride bath and the possible explanation was discussed. The difference of magnetic properties was also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-47

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. D. Lee, H. S. Kim, S. Y. Jeong, K. H. Kim, J. J. Lee, J. E. Kim, Curr. Appl. Phys. Vol. 10 (2010), p.249.

Google Scholar

[2] Y. P Lee, K. W. Kim, R. Gontarz, Y. V. Kudryavtsev, Curr. Appl. Phys. Vol. 16 (2001), p.451.

Google Scholar

[3] Z. B. Yu, M. H. Qiao, H. X. Li, J. F. Deng, Appl. Cata. Vol. 163 (1997), p.1.

Google Scholar

[4] W. Maziarz, J. Alloys Compd. Vol. 448 (2008), p, 223.

Google Scholar

[5] P. N. Zhang, J. Liu, J. Alloys Compd. Vol. 462 (2008), p.225.

Google Scholar

[6] L. Shi, C. F. Sun, P. Gao, F. Zhou, W. M. Liu, Appl. Surf. Sci. Vol. 252 (2006), p.3591.

Google Scholar

[7] A. Ghahremaninezhada, A. Dolati, J. Alloys Compd. Vol. 480 (2009), p.275.

Google Scholar

[8] B. N. Mondal, A. Basumallick, P. P. Chattopadhyay, J. Alloys Compd. Vol. 457 (2008), p.10.

Google Scholar

[9] L. Aymard, B. Dumont, G. Viau, J. Alloys Compd. Vol. 242 (1996), p.108.

Google Scholar

[10] P. Díaz-Arista, Z. I. Ortiz, H. Ruiz, R. Ortega, Y. Meas, G. Trejo, Surf. Coat. Tech. Vol. 203 (2009), p.1167.

Google Scholar

[11] Z. F. Lodhi, J. M. C. Mol, W. J. Hamer, H. A. Terryn, J. H. W. DeWit, Electrochim. Acta. Vol. 52 (2007), p.5444.

Google Scholar

[12] E. Beltowska-Lehman, Surf. Coat. Tech. Vol. 151–152 (2002), p.440.

Google Scholar

[13] E. Beltowska-Lehman, P. Ozga, Z. Swiatek, Surf. Coat. Tech. Vol. 151–152 (2002), p.444.

Google Scholar

[14] Sun Kyu Kim, Hong Jae Yoo, Surf. Coat. Tech. Vol. 108 –109 (1998), p.564.

Google Scholar

[15] C. Guo, Y. Zuo, X. H. Zhao, J. M. Zhao, J. P. Xiong, Surf. Coat. Tech. Vol. 202 (2008), p, 3246.

Google Scholar

[16] Y. J. Xue, X. Z. Jia, Y. W. Zhou, W. Ma, J. S. Li, Surf. Coat. Tech. Vol. 200 (2006), p, 5677.

Google Scholar

[17] B. S. Li, A. Lin, X. Wu, Y. M. Zhang, F. X. Gan, J. Alloy. Compd. Vol. 453 (2008), p, 93.

Google Scholar

[18] T. Nickchi, M. Ghorbani, Surf. Coat. Tech. Vol. 203 (2009), p.3037.

Google Scholar

[19] M. M. Kamel, J. Appl. Electrochem, Vol. 37 (2007), p.483.

Google Scholar

[20] A. Bai, C. C. Hu, Electrochim. Acta, Vol. 47 (2002), p.3447.

Google Scholar

[21] C. L. Fan, D. L. Piron, Electrochim. Acta, 41 (1996) 1713.

Google Scholar