Synthesis and Microwave Absorption Characteristics of Polyaniline

Article Preview

Abstract:

This paper aims at reporting the synthesis and microwave absorption characteristics of polyaniline (PANI). The PANI nanoparticles were synthesized by chemical oxidative polymerization method with ammonium persulfate ((NH4)2S2O8, APS) as oxidant and hydrochloric acid (HCl) for protonation of aniline. For APS/aniline mol ratio of 1, HCl concentration of 1 mol/L, reaction temperature of 5°C, the reaction time of 6h, the obtained PANI exhibits the highest value(30.9 S·cm-1)of the electrical conductivity. The structure and morphology of PANI were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrophotometer (FT-IR), ultraviolet-visible spectrophotometer (UV-Vis) analysis ways. Microwave absorbing performances were investigated using wave-guide method with vector network analyzer in 2–18 GHz. The results showed that there is a maximum absorption peak with RL= -12.63dB at 13.61GHz,the value of RL ≤−10 dB is maintained from 11.38GHz to 18GHz for the sample of the thickness for 2mm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-57

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Cottevieille, A. Le Méhauté, C. Challioui, et al. : Synth. Met. Vol. 101(1999), p.703

Google Scholar

[2] S. W. Phang, T. Hino, M. H. Abdullah and N. Kuramoto : Mater. Chem. Phys. Vol. 104 (2007), p.327

Google Scholar

[3] S. Ameen, V. Ali, M. Zulfequar, et al. : Curr. Appl. Phys. Vol. 9 (2009), p.478

Google Scholar

[4] Anna P. Chandrasekhar, K. Naishadham: Synth. Met.Vol.105 (1999), p.115

Google Scholar

[5] C. L. Yuan, Y. S. Hong: J. Mater. Sci. Vol.45 (2010), p.3470

Google Scholar

[6] J. Alam, U. Riaz, U. Riaz and S. Ahmad: J. Magn. Magn. Mater. Vol. 314 (2007), p.93

Google Scholar

[7] Sanjeev Kumar, Vaishali Singh, Saroj Aggarwal, et al.: Compos. Sci. Technol. Vol. 70, (2010), p.249

Google Scholar

[8] Sitao Yang, Yoshie Ishikawa, Hiroshi Itoh and Qi Feng: J. Colloid Interface Sci.Vol. 356 (2011), p.734

Google Scholar

[9] Atul Kapil, Manish Taunk, Subhash Chand: J Mater Sci: Mater Electron Vol. 21 (2010), P. 399

Google Scholar

[10] Tursun Abdiryim, X. G. Zhang, Ruxangul Jamal: Mater. Chem. Phys. Vol. 90 (2005), p.367

Google Scholar

[11] N. Colak, B. Sokmen : Designed Mono Polym Vol. 3 (2000), p.181

Google Scholar

[12] J. Huo, L. Wang, H. Yu: J Mater Sci Vol. 44 (2009), p.3917

Google Scholar

[13] R. S. Meena1, Sudeshna Bhattachrya, Ratnamala Chatterjee: Mater. Sci. Eng., B Vol. 171 (2010), p.133

Google Scholar

[14] Hossein Salavati, Nahid Rasouli: Appl. Surf. Sci. Vol. 257 (2011), p.4532

Google Scholar

[15] Ö. Yavuz, M.K. Ram, M. Aldissi,et al.: Synth. Met. Vol.151 (2005), p.211

Google Scholar

[16] F. Sauzedde, A. ESmïssari, C. Pichot: Colloid Polym. Sci.Vol. 277 (1999), p.846

Google Scholar

[17] R. T. Ma, H.T. Zhao, G. Zhang: Mater. Res. Bull. Vol.45 (2010), p.1064

Google Scholar