[1]
Dassault Systèmes. Abaqus Theory Manual(6.9). 2.4.5 Explicit dynamic analysis, (2011).
Google Scholar
[2]
K.H. Low. Numerical implementation of structural dynamics analysis. Computer & Structures. Vol.65, No. 1, (1997), pp.109-125.
Google Scholar
[3]
B. Bourel, A. Combescure. A method to handle mesh switches for non-linear structural analysis in explicit dynamics. Finite Elements in Analysis and Design, 47 (2011), p.812–824.
DOI: 10.1016/j.finel.2011.02.012
Google Scholar
[4]
S.S. Shishvan et al. A time integration algorithm for linear transient analysis based on the reproducing kernel method. Comput. Methods Appl. Mech. Engrg, 198 (2009), p.3361–3377.
DOI: 10.1016/j.cma.2009.06.011
Google Scholar
[5]
S.Rostami,et al. An explicit time integration method for structural dynamics using cubic B-spline polynomial functions. Scientia Iranica, Transactions A: Civil Engineering(2012), Doi: 10.1016/j.scient, (2012).
DOI: 10.1016/j.scient.2012.12.003
Google Scholar
[6]
S.H. Yina. An Unconditionally Stable Explicit Method for Structural Dynamics. Procedia Engineering 14(2011), pp.2519-2526.
DOI: 10.1016/j.proeng.2011.07.317
Google Scholar
[7]
S. Idelsohn et al. Large time-step explicit integration method for solving problems with dominant convection. Comput. Methods Appl. Mech. Engrg. 217–220 (2012), p.168–185.
DOI: 10.1016/j.cma.2011.12.008
Google Scholar
[8]
Chang SY. Enhanced unconditionally stable explicit pseudodynamic algorithm. J. of Engineering Mechanics. ASCE 133(5), (2007), pp.541-554.
DOI: 10.1061/(asce)0733-9399(2007)133:5(541)
Google Scholar
[9]
J.S. Sun et al. Comparison of implicit and explicit Finite element methods for dynamic problems. Journal of Materials Processing Technology. 105 (2000), pp.110-118.
DOI: 10.1016/s0924-0136(00)00580-x
Google Scholar
[10]
Miguel Vieira, Kenji Shimada. Surface mesh segmentation and smooth surface extraction through region growing. Computer Aided Geometric Design. 22(2005), pp.771-792.
DOI: 10.1016/j.cagd.2005.03.006
Google Scholar