Switched Projective Synchronization of the Stochastic Newton-Leipnik System

Article Preview

Abstract:

The paper is involved with switched projective synchronization of two identical chaotic systems with random parameter using adaptive control method. Based on the orthogonal polynomial expansion of the Hilbert spaces, the Newton-Leipnik system with random parameter is transformed as the equivalent deterministic system. At last, an adaptive controller can be designed by the Lyapunov stability theorem for achieving switched projective synchronization of the equivalent deterministic system with different initial values. Corresponding numerical simulations are performed to verify the effectiveness of presented schemes for synchronizing the stochastic Newton-Leipnik system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

570-574

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pecora LM, Carroll TL. Phys Rev Lett. Forum Vol. 64(1990), p.821

Google Scholar

[2] Feki Moez. Chaos, Solitons & Fractals. Forum Vol 18 (2003), p.141

Google Scholar

[3] Chin Y C. Chaos, Solitons & Fractals. Forum Vol 23 (2005), p.1063

Google Scholar

[4] Cai G L, Zheng S, Tian L X. Chin. Phys. B. Forum Vol.17 (2008), p.2412

Google Scholar

[5] Nian F Z, Wang X Y, Niu Y J, Lin D. Appl.Math. Comput. Forum Vol.217 (2010), p.2481

Google Scholar

[6] M.Mossa A-S, M.S.M. N. Commun Nonlinear Sci Numer Simul. Forum Vol.15 (2010), p.3022

Google Scholar

[7] Wang Y W, Guan Z H. Chaos, Solitons & Fractals. Forum Vol. 27 (2006), p.97

Google Scholar

[8] Chen D L, Sun J T, Huang C S. Chaos, Solitons & Fractals. Forum Vol.28 (2006), p.213

Google Scholar

[9] Ronnie M, Jan R. Phys. Rev. Lett. Forum Vol. 82 (1999), p.3042

Google Scholar

[10] Li G H. Chaos, Solitons & Fractals. Forum Vol. 32 (2007), p.1786

Google Scholar

[11] Zheng S. Appl. Math. Comput. Forum Vol. 218 (2012), p.5891

Google Scholar

[12] Li Z B, Zhao X S. Nonlinear Analysis: Real World Applications. Forum Vol.12 (2011), p.2607

Google Scholar

[13] Li W L, Chen X Q. Commun Nonlinear Sci Numer Simul. Forum Vol.14 (2009), p.3100

Google Scholar

[14] Li C L. Commun Nonlinear Sci Numer Simulat. Forum Vol.17 (2012), p.405

Google Scholar

[15] Du H Y. Commun Nonlinear Sci Numer Simulat. Forum Vol.17 (2012), p.3353

Google Scholar

[16] Ucar A., Lonngren K E, Bai E W. Chaos, Solitons & Fractals. Forum Vol.38 (2008), p.254

Google Scholar

[17] K. S. S, M. S. Commun Nonlinear Sci Numer Simulat. Forum Vol.15 (2010), p.4058

Google Scholar

[18] Jain P.K., Lungu E.M.. Renew. Energy. Forum Vol.27 (2002), p.197

Google Scholar

[19] Huang C X, He Y G, Huang L H. Nonlinear Dyn. Forum Vol.57 (2009), p.469

Google Scholar

[20] Xu Y H, Li B, Zhou W N, Fang J A. Nonlinear Dyn. Forum Vol .70(2012), p .289

Google Scholar

[21] Yu W W, Cao J D. Physica A: Statistical Mechanics and its Applications ,Forum Vol.373(2007), p.252

Google Scholar

[22] Ma S J, Xu W. Chinese Physics. Forum Vol.15 (2006), p.1231

Google Scholar

[23] Ma S J, Xu W, Jin Y F, Li W, Fang T, Commun Nonlinear Sci Numer Simulat. 12(2007), p.366

Google Scholar

[24] Ma S J, Appl. Math. Comput, Forum Vol.219(2012), p.306

Google Scholar

[25] Wang X D, Ge C, International Journal of Nonlinear Science, Forum Vol.5(2008), p.133

Google Scholar