[1]
X.J.Lu and M.H. Huang, System-decomposition-based multilevel control for hydraulic press machine," IEEE Transactions on Industrial Electronics, vol. 59, no. 4, (2012), pp.1980-1987.
DOI: 10.1109/tie.2011.2160137
Google Scholar
[2]
M.Chen, M. H. Huang, Y.C. Zhou, L.H. Zhan, Synchronism control system of heavy hydraulic press, in Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, (2009), pp.17-19.
DOI: 10.1109/icmtma.2009.500
Google Scholar
[3]
H.Zheng and N.Sepehri, Tracking control of hydraulic actuators using a LuGre friction model compensation, Journal of Dynamic Systems, Measurement, and Control, vol.130, no.1, (2008), pp.014502-7.
DOI: 10.1115/1.2807181
Google Scholar
[4]
Z.Jamaludin, H.V. Brussel and J.Swevers, Quadrant glitch compensation using friction model-based feedforward and an inverse-model-based disturbance observer, in Proceedings 10th International Workshop on Advanced Motion Control, Trento, Italy, (2008), pp.212-217.
DOI: 10.1109/amc.2008.4516068
Google Scholar
[5]
Z.Jamaludin, H.V. Brussel and J.Swevers, Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer, IEEE Transactions on Industrial Electronics, vol.56, no.10, (2009), pp.3848-3853.
DOI: 10.1109/tie.2009.2017560
Google Scholar
[6]
C.Y. Chen and M.Y. Cheng, Adaptive disturbance compensation and load torque estimation for speed control of a servomechanism, International Journal of Machine Tools & Manufacture, vol.59, pp.6-15, (2012).
DOI: 10.1016/j.ijmachtools.2012.03.006
Google Scholar
[7]
X.J. Wang and S.P. Wang, High performance adaptive control of mechanical servo system with LuGre friction model: identification and compensation, Journal of Dynamic Systems, Measurement, and Control, vol.134, no.1, (2012), pp.011021-8.
DOI: 10.1115/1.4004785
Google Scholar
[8]
B.Armstrong-helouvry, P.Dupont and C.Canudas de Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, vol.30, no.7, (1994), pp.1083-1138.
DOI: 10.1016/0005-1098(94)90209-7
Google Scholar
[9]
P.R. Dahl, Measurement of solid friction parameters of ball bearings, in Proceedings of the 6th Annual Symposium on Incremental Motion Control Systems and Devices, California, USA, (1977), pp.49-60.
Google Scholar
[10]
C.Canudas de Wit, H.Olsson, K.J. Astrom and P.Lischinsky, A new model for control of systems with friction, IEEE Transactions on Automatic Control, vol.40, no.3, (1995), pp.419-425.
DOI: 10.1109/9.376053
Google Scholar
[11]
F.Al-bender, V.Lampaert and J.Swevers, The generalized Maxwell-slip model: a novel model for friction simulation and compensation, IEEE Transactions on Automatic Control, vol.50, vo.11, (2005), pp.1883-1887.
DOI: 10.1109/tac.2005.858676
Google Scholar
[12]
H.Yanada and Y.Sekikawa, "Modeling of dynamic behaviors of friction", Mechatronics, vol.18, no.7, (2008), pp.330-339.
DOI: 10.1016/j.mechatronics.2008.02.002
Google Scholar
[13]
H.Yanada, K.Takahashi and A.Matsui, Identification of dynamic parameters of modified LuGre model and application to hydraulic actuator, Transactions of the Japan Fluid Power system Society, vol.40, no.4, (2009), pp.57-64.
DOI: 10.5739/jfps.40.57
Google Scholar
[14]
X.B. Tran, N.Hafizah and H.Yanada, Modeling of dynamic friction behavior of hydraulic cylinders, Mechatronics, vol.22, no.1, (2012), pp.65-75.
DOI: 10.1016/j.mechatronics.2011.11.009
Google Scholar
[15]
C.Canudas de wit and P.Lischinsky, Adaptive friction compensation with partially known dynamic friction model, International Journal of Adaptive Control and Signal Processing, vol.11, no.1, (1997), pp.65-80.
DOI: 10.1002/(sici)1099-1115(199702)11:1<65::aid-acs395>3.0.co;2-3
Google Scholar
[16]
D.D. Rizos and S.D. Fassois, Friction identification based upon the LuGre and Maxwell slip models, IEEE Transactions on Control Systems Technology, vol.17, no.1, (2009), pp.153-160.
DOI: 10.1109/tcst.2008.921809
Google Scholar
[17]
W.J. Zang, Parameter identification of LuGre friction model in servo system based on improved particle swarm optimization algorithm, in Proceedings of the 26th Chinese Control Conference, Zhangjiajie, China, (2007), pp.135-139.
DOI: 10.1109/chicc.2006.4346908
Google Scholar
[18]
R.H.A. Hensen, V.D. Molengraft and M.Steinbuch, Frequency domain identification of dynamic friction model parameters, IEEE Transactions on Control Systems Technology, vol.10, no.2, (2002), pp.191-196.
DOI: 10.1109/87.987064
Google Scholar