Modeling and Identification of Friction Behaviors of Hydraulic Forging Press Machine

Article Preview

Abstract:

A novel modified LuGre friction model is proposed by taking pressure of the cylinders into consideration. And a practical identification method to estimate the parameters associated with the modified friction model is presented. The validity of the modified model is investigated experimentally. It is shown that the modified LuGre model can demonstrate the comprehensive friction behaviors of the forging machine with a fairly good accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-83

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.J.Lu and M.H. Huang, System-decomposition-based multilevel control for hydraulic press machine," IEEE Transactions on Industrial Electronics, vol. 59, no. 4, (2012), pp.1980-1987.

DOI: 10.1109/tie.2011.2160137

Google Scholar

[2] M.Chen, M. H. Huang, Y.C. Zhou, L.H. Zhan, Synchronism control system of heavy hydraulic press, in Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, (2009), pp.17-19.

DOI: 10.1109/icmtma.2009.500

Google Scholar

[3] H.Zheng and N.Sepehri, Tracking control of hydraulic actuators using a LuGre friction model compensation, Journal of Dynamic Systems, Measurement, and Control, vol.130, no.1, (2008), pp.014502-7.

DOI: 10.1115/1.2807181

Google Scholar

[4] Z.Jamaludin, H.V. Brussel and J.Swevers, Quadrant glitch compensation using friction model-based feedforward and an inverse-model-based disturbance observer, in Proceedings 10th International Workshop on Advanced Motion Control, Trento, Italy, (2008), pp.212-217.

DOI: 10.1109/amc.2008.4516068

Google Scholar

[5] Z.Jamaludin, H.V. Brussel and J.Swevers, Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer, IEEE Transactions on Industrial Electronics, vol.56, no.10, (2009), pp.3848-3853.

DOI: 10.1109/tie.2009.2017560

Google Scholar

[6] C.Y. Chen and M.Y. Cheng, Adaptive disturbance compensation and load torque estimation for speed control of a servomechanism, International Journal of Machine Tools & Manufacture, vol.59, pp.6-15, (2012).

DOI: 10.1016/j.ijmachtools.2012.03.006

Google Scholar

[7] X.J. Wang and S.P. Wang, High performance adaptive control of mechanical servo system with LuGre friction model: identification and compensation, Journal of Dynamic Systems, Measurement, and Control, vol.134, no.1, (2012), pp.011021-8.

DOI: 10.1115/1.4004785

Google Scholar

[8] B.Armstrong-helouvry, P.Dupont and C.Canudas de Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, vol.30, no.7, (1994), pp.1083-1138.

DOI: 10.1016/0005-1098(94)90209-7

Google Scholar

[9] P.R. Dahl, Measurement of solid friction parameters of ball bearings, in Proceedings of the 6th Annual Symposium on Incremental Motion Control Systems and Devices, California, USA, (1977), pp.49-60.

Google Scholar

[10] C.Canudas de Wit, H.Olsson, K.J. Astrom and P.Lischinsky, A new model for control of systems with friction, IEEE Transactions on Automatic Control, vol.40, no.3, (1995), pp.419-425.

DOI: 10.1109/9.376053

Google Scholar

[11] F.Al-bender, V.Lampaert and J.Swevers, The generalized Maxwell-slip model: a novel model for friction simulation and compensation, IEEE Transactions on Automatic Control, vol.50, vo.11, (2005), pp.1883-1887.

DOI: 10.1109/tac.2005.858676

Google Scholar

[12] H.Yanada and Y.Sekikawa, "Modeling of dynamic behaviors of friction", Mechatronics, vol.18, no.7, (2008), pp.330-339.

DOI: 10.1016/j.mechatronics.2008.02.002

Google Scholar

[13] H.Yanada, K.Takahashi and A.Matsui, Identification of dynamic parameters of modified LuGre model and application to hydraulic actuator, Transactions of the Japan Fluid Power system Society, vol.40, no.4, (2009), pp.57-64.

DOI: 10.5739/jfps.40.57

Google Scholar

[14] X.B. Tran, N.Hafizah and H.Yanada, Modeling of dynamic friction behavior of hydraulic cylinders, Mechatronics, vol.22, no.1, (2012), pp.65-75.

DOI: 10.1016/j.mechatronics.2011.11.009

Google Scholar

[15] C.Canudas de wit and P.Lischinsky, Adaptive friction compensation with partially known dynamic friction model, International Journal of Adaptive Control and Signal Processing, vol.11, no.1, (1997), pp.65-80.

DOI: 10.1002/(sici)1099-1115(199702)11:1<65::aid-acs395>3.0.co;2-3

Google Scholar

[16] D.D. Rizos and S.D. Fassois, Friction identification based upon the LuGre and Maxwell slip models, IEEE Transactions on Control Systems Technology, vol.17, no.1, (2009), pp.153-160.

DOI: 10.1109/tcst.2008.921809

Google Scholar

[17] W.J. Zang, Parameter identification of LuGre friction model in servo system based on improved particle swarm optimization algorithm, in Proceedings of the 26th Chinese Control Conference, Zhangjiajie, China, (2007), pp.135-139.

DOI: 10.1109/chicc.2006.4346908

Google Scholar

[18] R.H.A. Hensen, V.D. Molengraft and M.Steinbuch, Frequency domain identification of dynamic friction model parameters, IEEE Transactions on Control Systems Technology, vol.10, no.2, (2002), pp.191-196.

DOI: 10.1109/87.987064

Google Scholar