[1]
Geim, A.K., Graphene: status and prospects. Science (2009), pp.1530-1534.
Google Scholar
[2]
Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, (2005), pp.197-200.
Google Scholar
[3]
Gautam, M. and A.H. Jayatissa, Gas sensing properties of graphene synthesized by chemical vapor deposition. Materials Science & Engineering C-Materials for Biological Applications (2011), pp.1405-1411.
DOI: 10.1016/j.msec.2011.05.008
Google Scholar
[4]
Li, X.M., et al., Graphene-On-Silicon Schottky Junction Solar Cells. Advanced Materials, 2010.
Google Scholar
[5]
Liang, Y.Y., et al., Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules. NANOTECHNOLOGY (2009).
DOI: 10.1088/0957-4484/20/43/434007
Google Scholar
[6]
Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science (2004), pp.666-9.
Google Scholar
[7]
Bahamon, D.A., A.L.C. Pereira, and P.A. Schulz, Third edge for a graphene nanoribbon: A tight-binding model calculation. Physical Review B (2011).
DOI: 10.1103/physrevb.83.155436
Google Scholar
[8]
Gunlycke, D., H. Lawler, and C. White, Room-temperature ballistic transport in narrow graphene strips. Physical Review B (2007).
DOI: 10.1103/physrevb.75.085418
Google Scholar
[9]
Nakada, K., et al., Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B (1996), pp.17954-17961.
DOI: 10.1103/physrevb.54.17954
Google Scholar
[10]
Ezawa, M., Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B (2006).pp.73-74.
DOI: 10.1103/physrevb.73.045432
Google Scholar
[11]
Park, J., Y.H. Ahn, and C. Ruiz-Vargas, Imaging of Photocurrent Generation and Collection in Single-Layer Graphene. Nano Letters (2009), pp.1742-1746.
DOI: 10.1021/nl8029493
Google Scholar
[12]
Gabor, N.M., et al., Hot Carrier-Assisted Intrinsic Photoresponse in Graphene. Science (2011), pp.648-652.
Google Scholar
[13]
Capelle, K., A bird's-eye view of density-functional theory. Brazilian Journal of Physics (2006) pp.1318-1343.
Google Scholar
[14]
Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters (1996), pp.3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[15]
Troullier, N. and J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Physical Review B (1991)
Google Scholar
[16]
Kleinman, L. and D.M. Bylander, Efficacious form for model pseudopotentials. Physical Review Letters (1982), pp.1425-1428.
DOI: 10.1103/physrevlett.48.1425
Google Scholar
[17]
Ordejón, P., E. Artacho, and J.M. Soler, Self-consistent order-N density-functional calculations for very large systems. Physical Review B (1996), pp.10441-10444.
DOI: 10.1103/physrevb.53.r10441
Google Scholar
[18]
Soler, J.M., et al., The SIESTA method for ab initio order- N materials simulation. Journal of Physics: Condensed Matter (2002), p.2745.
Google Scholar
[19]
Artacho, E., et al., Linear-Scaling ab-initio Calculations for Large and Complex Systems. physica status solidi (b) (1999), pp.809-817.
DOI: 10.1002/(sici)1521-3951(199909)215:1<809::aid-pssb809>3.0.co;2-0
Google Scholar
[20]
Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical Review B, (1976), pp.5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[20]
Han, M., et al., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters (2007).
Google Scholar
[21]
Barone, V., O. Hod, and G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters (2006), pp.2748-2754.
DOI: 10.1021/nl0617033
Google Scholar