Effects of Precursor Infiltration and Pyrolysis Cycles on Properties of Hollow Silica Fiber Reinforced Nitride Composites

Article Preview

Abstract:

2.5-Dimension hollow silica fiber reinforced nitride (2.5D HSFRN) composites were fabricated by repeated infiltration and pyrolysis from hybrid polyborosilazane precursor. The effects of precursor infiltration and pyrolysis (PIP) cycles on densification behavior, mechanical properties, dielectric properties, and microstructures of the composites were investigated. With increasing PIP cycles, the density of 2.5D HSFRN composites increases, the mechanical properties increase accordingly, however, the dielectric properties decrease. The composites prepared after three PIP cycles, which have moderate flexural strength of 77.4MPa and elastic modulus of 20.7GPa, low dielectric constant of 2.98 and loss angle tangent of 3.9×10-3, exhibit suitable mechanical and dielectric properties. The calculation results of dielectric performance show that 2.5D HSFRN composites have good broadband wave-transparent properties, which result from high purity hollow silica fibers with excellent dielectric properties and low density nitride matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

836-840

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.G. Jiang, C.R. Zhang, F. Cao, S.Q. Wang, H.F. Hu and G.J. Qi: Sci. Chin. Ser. E, Vol.37 (2007), p.661

Google Scholar

[2] J. Barta and M. Manela: Mater. Sci. Eng., Vol.71 (1985), p.265

Google Scholar

[3] J. D. Walton Jr.: Am. Ceram. Soc. Bull., Vol.53 (1974), p.255

Google Scholar

[4] H. Chen, L. M. Zhang, G. Y. Jia, W. H. Luo and S. Yu: Key Eng. Mater., Vol.249 (2003), p.159

Google Scholar

[5] B. Li, C.R. Zhang, F. Cao, S.Q. Wang, Y.B. Cao, G.J. Qi and Y.G. Jiang: J. Mater. Eng. & Perf., Vol.17 (2008), p.111

Google Scholar

[6] X. R. Zou, C. R. Zhang, F. Cao, S. Q. Wang, B. Li, Y. X. Song and J. J. Mo: Mater. Technol., Vol.25 (2010), p.262

Google Scholar

[7] Y. G. Jiang, C. R. Zhang, F. Cao, S. Q. Wang, G. J. Qi and Y. B. Cao: Mater. Sci. Technol., Vol.23 (2007), p.880

Google Scholar

[8] Y. G. Jiang, C. R. Zhang, F. Cao, S. Q. Wang, H. F. Hu and G. J. Qi: Adv. Eng. Mater., Vol.9 (2007), p.114

Google Scholar

[9] B. Li, C. R. Zhang, F. Cao, S. Q. Wang, J. S. Li and B. Chen: Mater. Technol., Vol.22 (2007), p.81

Google Scholar

[10] K. Su, E. E. Remsen, G. A. Zank and L. G. Sneddon : Chem. Mater., Vol.5 (1993), p.547

Google Scholar

[11] W. V. Hough, C. R. Guibert and G. T. Hefferan, U.S. Patent 4,150,097. (1979)

Google Scholar

[12] T. Isoda, H. Kaya and H. Nishii: J. Inorg. Organomet. Polym., Vol.2 (1992), p.151

Google Scholar

[13] A. V. Goncharenko, V. Z. Lozovski and E. F. Venger: Opt. Commun., Vol.174 (2000), p.19

Google Scholar

[14] C. M. Regalado: Geoderma, Vol.123 (2004), p.41

Google Scholar

[15] A. W. Rudge, K. Milne, A. D. Olver and P. Knight: The handbook of antenna design (Peter Peregrinus Ltd., London 1983).

Google Scholar