Morphology and Field-Effect Mobility Characterization of Planar Five-Ring-Fused Dithiophene-Dione

Article Preview

Abstract:

The thin films of compound 2,7-dihexyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']- dithiophene-4,9-dione were grown by physical vapor growth at different substrate temperatures. The morphology of surfaces was characterized by atomic force microscope and X-ray diffraction, which exhibits increased crystal grain size and film order with the increase of substrate temperature. The molecule exhibits layer-by-layer packing on the Si/SiO2 substrate and the tilt angle with respect to the substrate is 49.5°, which form extended slipped face-to-face π-stacking in each layer. This result indicates that molecular packing in the thin film is similar to that in the single crystal. The organic field-effect transistors (OFETs) incorporating this compound shows a field effect mobility at the order of 10-3 cm2V-1s-1 and an on-off ratio of 4 × 106 with good air-stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

452-455

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Tsumura, H. Koezuka, and T. Ando: Appl. Phys. Lett. Vol. 49 (1986), p.1210.

Google Scholar

[2] C.D. Dimitrakopoulos, and P.R.L. Malenfant: Adv. Mater. Vol. 14 (2002), p.99.

Google Scholar

[3] G. Horowitz: Adv. Mater. Vol. 10 (1998), p.365.

Google Scholar

[4] Y.V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, and A.J. Rogers: Science Vol. 303 (2004), p.1644.

DOI: 10.1126/science.1094196

Google Scholar

[5] B.A. Jones, A. Facchetti, M.R. Wasielewski, and T.J. Marks: J. Am. Chem. Soc. Vol. 129 (2007), p.15259.

Google Scholar

[6] Y.Y. Liu, C.L. Song, W.J. Zeng, K.G. Zhou, Z.F. Shi, C.B. Ma, F. Yang, H.L. Zhang, and X. Gong: J. Am. Chem. Soc. Vol. 132 (2010), p.16349.

Google Scholar

[7] S.F. Nelson, Y.Y. Lin, D.J. Gundlach, and T.N. Jackson: Appl. Phys. Lett. Vol. 72 (1998), p.1854.

Google Scholar

[8] Y.Y. Lin, D.J. Gundlach, S.F. Nelson, and T.N. Jackson: IEEE Electron Device Lett. Vol. 18 (1997), p.606.

Google Scholar

[9] A. Maliakal, K. Raghavachari, H.E. Katz, E. Chandross, and T. Siegrist: Chem. Mater. Vol. 16 (2004), p.4980.

Google Scholar

[10] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui: J. Am. Chem. Soc. Vol. 129 (2007), p.15732.

DOI: 10.1021/ja074841i

Google Scholar

[11] M.C. Chen, C. Kim, S.Y. Chen, Y.J. Chiang, M.C. Chung, A. Facchetti, and T.J. Marks: J. Mater. Chem. Vol. 18 (2008), p.1029.

Google Scholar

[12] P. Gao, D. Beckmann, H.N. Tsao, X. Feng, V. Enkelmann, W. Pisula, and K. Müllen: Chem. Commun. Vol. 10 (2008), p.1548.

Google Scholar

[13] H. Sirringhaus: Adv. Mater. Vol. 17 (2005), p.2411.

Google Scholar

[14] A. Zen, A. Bilge, F. Galbrecht, R. Alle, K. Meerholz, J. Grenzer, D. Neher, U. Scherf, and T. Farrell: J. Am. Chem. Soc. Vol. 128 (2006), p.3914.

DOI: 10.1021/ja0573357

Google Scholar

[15] J. Wang, K. Liu, Y. Liu, C. Song, Z. Shi, J. Peng, H. Zhang, and X. Cao: Org. Lett. Vol. 11 (2009), p.2563.

Google Scholar

[16] J. Wang, W.J. Zeng, H. Xu, B. Li, H. Zhang, and X. Cao: Chin. J. Chem. Vol. 30 (2012), p.681.

Google Scholar