[1]
Everitt B., Landau S., Lessse M., Cluster analysis, Arnold (2001).
Google Scholar
[2]
Sander, J., Course homepage for Principles of Knowledge Discovery in Data, http: /www. cs. ualberta. ca/~joerg (2003).
Google Scholar
[3]
MacQueen, J.B. Some methods for classification and analysis of multivariate observation. In: Le Cam, L.M., Neyman, J. (Eds. ), Berkeley Symposium on Mathematical Statistics and Probability [C]. California: University of California Press, (1967).
Google Scholar
[4]
Khan, S. S., Ahmad, A. Cluster center initialization algorithm for k-means clustering [J]. Pattern Recognition Lett. Vol. 25 (11), (2004) p.1293–1302.
DOI: 10.1016/j.patrec.2004.04.007
Google Scholar
[5]
Stephen J. Redmond, Conor Heneghan. A method for initialising the K-means clustering algorithm using kd-trees [J]. Pattern Recognition Letters, Vol. 28 (8), (2007) p.965–973.
DOI: 10.1016/j.patrec.2007.01.001
Google Scholar
[6]
Murat Erisoglu, Nazif Calis, Sadullah Sakallioglu, A new algorithm for initial cluster centers in k-means algorithm, Pattern Recognition Letters 32 (2011) p.1701–1705.
DOI: 10.1016/j.patrec.2011.07.011
Google Scholar
[7]
Pena, J.M., Lozana, J.A., Larranaga, P., An empirical comparison of four initialization methods for the K- Means algorithm. Pattern Recogn. Lett., Vol. 20, (1999) p.1027–1040.
Google Scholar
[8]
Meila, M., Heckerman, D. An experimental comparison of several clustering methods. Microsoft Research Report MSR-TR-98-06, Redmond, WA, (1998) pp.1-28.
Google Scholar
[9]
Douglas Steinley, Michael J. Brusco. Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques. Journal of Classification, Vol. 24 (1), (2007) pp.99-121.
DOI: 10.1007/s00357-007-0003-0
Google Scholar
[10]
The UCI Machine Learning Repository, 1993, http: /www. ics. uci. edu/~mlearn/MLRepository. html.
Google Scholar