[1]
T. N. Goodman , S. L. Lee, Wavelets of multiplicity r, Trans. Am. Math. Soc., 338 (1) (1994), 307-324.
Google Scholar
[2]
C.K. Chui, J.A. Lian, Construction of compactly supported symmetric and antisymmetric ortho- normal wavelets with scale=3, J. Appl. Comput. Harmon. Anal., 2(1995), 68-84.
DOI: 10.1006/acha.1995.1003
Google Scholar
[3]
X. G. Xia, A new prefilter design for discrete multiwavelet transforms, IEEE Trans. Signal Process., 46 (4)(1998), 158-1570.
DOI: 10.1109/78.678469
Google Scholar
[4]
X. G. Xia, D.P. Hardin, J. Geronimo, Design of prefilters for discrete multiwavelets transforms, IEEE Trans. Signal Process., 44(2)(1996), 25-35.
DOI: 10.1109/78.482009
Google Scholar
[5]
J. Lebrun, M. Vetterli, Balanced multiwavelets theory and design, IEEE Trans. Signal Process., 46(4) (1998), 1119-1124.
DOI: 10.1109/78.668561
Google Scholar
[6]
J. Lebrun, M. Vetterli, High-order balanced multiwavelets: theory, factorization, and design, IEEE Trans. Signal process., 49 (9)(2001), 1918-(1930).
DOI: 10.1109/78.942621
Google Scholar
[7]
Q.T. Jiang, On the design of multifilter banks and orthonormal multiwavelet bases, IEEE Trans. Signal Process, 46 (12) (1998), 3293-3302.
DOI: 10.1109/78.735304
Google Scholar
[8]
G.Q. Wang, Matrix methods of constructing wavelet filters and discrete hyper-wavelet transforms, IEEE, Optical Engineers , 43 (10)(2000), 1080-1087.
DOI: 10.1117/1.602465
Google Scholar
[9]
G.Q. Wang, Four-bank compactly supported bi-symmetric orthonormal wavelets bases, IEEE, Optical Engineers, 46 (2004), 2362-2368.
DOI: 10.1117/1.1788692
Google Scholar
[10]
B. Han, X. Zhuang, Matrix extension with symmetry and its application to symmetric orthonormal multiwavelets, SIAM J. Math. Anal. , 42 (5)(2010), 2297-2317.
DOI: 10.1137/100785508
Google Scholar
[11]
G. Plonka ,V. Strela, Construction of multiscaling functions with approximation and symmetry, SIAM . J . Math. Anal., 29(1998), 450-81.
DOI: 10.1137/s0036141096297182
Google Scholar