Magnetic Ferrite/Conductive Polyaniline Nanocomposite as Electromagnetic Microwave Absorbing Materials in the Low Frequency

Article Preview

Abstract:

Electromagnetic microwave absorbing composite material containing magnetic Mn-Zn ferrite/conductive polyaniline nanocomposites introducing into epoxy resin were fabricated. The conductivity of the Mn-Zn ferrite/polyaniline nanocomposites were investigated by a four point probe method. Complex permeability and reflection loss of the Mn-Zn ferrite/conductive polyaniline/epoxy resin composites have been studied in the frequency of 30 MHz to 1 GHz. It has been found that the conductivity of the nanocomposites can be tailored by controlling the weight percentage of polyaniline. The complex permeability increased with the decreasing weight percent of polyaniline. The composite with the polyaniline weight percent of above 60.89 % can effectively broaden the absorbing band with minimum absorption of 5 dB about 500 MHz. It has also been found that the composite with the polyaniline weight percent of 28.12 % has a maximum absorption of 23 dB at about 700 MHz for a coating thickness of 2 mm. Therefore, the prepared composites can be potentially applied in electromagnetic absorbing field in the low frequency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1811-1815

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Jiang, L.C. Li and F. Xu: Chin. J Chem. Vol. 24 (2006), p.1804.

Google Scholar

[2] W.J. Wang, Q.J. Jiao, C.G. Zang and X.D. Zhu: Adv. Mater. Res. Vol. 415-417 (2012) p.30.

Google Scholar

[3] N. Dubey and M. Leclerc. J Poly. Sci. Part B: Polym. Phys. Vol. 49 (2011) p.467.

Google Scholar

[4] J. Stejskal, M. Trchova, J. Kalenda, P.V. Fedorova, S. Prokes and J. Zemek. J Colloid. Interface. Sci. Vol. 298 (2006) p.87.

Google Scholar

[5] Y. Li, H. Zhang, Y. Liu, Q. Wen and J. Li. Nanotechnology. Vol. 19 (2008) p.105605.

Google Scholar

[6] P. Xiong, Q. Chen, M. He, X. Sun and X. Wang. J. Mater. Chem. Vol. 22 (2012) p.17485.

Google Scholar

[7] Ö. Yavuz, M. K. Ram, M. Aldissi, P. Poddar and S. Hariharan. J. Mater. Chem. Vol. 15 (2005) p.810.

Google Scholar

[8] E. E Tanrıverdi, A. T Uzumcu, H. Kavas, A. Demir and A. Baykal. Nano-Micro Lett. Vol. 3 (2) (2011) P. 99.

DOI: 10.1007/bf03353658

Google Scholar

[9] L. F. Malmonge, et al. Europ. Polym. J. Vol. 42 (2006) p.3108.

Google Scholar

[10] H.J. Zhang, Z.C. Liu, C.L. Ma, X. Yao, L.Y. Zhang and M.Z. Wu. Mater. Sci. Eng. Vol. B96 (2002) p.289.

Google Scholar

[11] S.S. Kim, S.T. Kim, J.M. Ahn and K.H. Kim. J. Magn. Magn. Mater. Vol. 271 (2004) p.39.

Google Scholar

[12] A.H. Elsayed, M.S.M. Eldin, A.H.A. Elazm and H.A. Motaweh. Int. J. Electrochem. Vol. 6 (2011) p.215.

Google Scholar

[13] F. Tabatabaie, M.H. Fathi, A. Saatchi, A. Ghasemi. J. Alloys. Comp. Vol. 470 (2009) p.332.

Google Scholar