Laser-Induced Shape Memory Polymer Actuator Used in a Deployable Display

Article Preview

Abstract:

Deployable flexible displays attract a great attention recently. The flexible display used on electronic equipment have been developed, which can deploy to reveal a much larger screen or rolled up. However, one of major problems is its actuation of deployment and fixture. In this paper, a deployable display actuated by the SMP actuator is proposed. The shape memory polymer (SMP) actuator, which is considered to be attached to the back side of a flexible display, is used to deploy and fix the flexible display. A new method of laser-induced actuation of SMP actuator is investigated. By this method, the SMP can be induced by infrared light transmitted through a treated optical fiber embedded in the actuator.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1926-1929

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. R. Wouter, E. D. P. Filip, J. G. Eric. Polymer networks containing crystallizable poly(octadecyl vinylether) segments for shape-memory materials. Macromol. Rapid Commun. 20(1999), 251-255.

DOI: 10.1002/(sici)1521-3927(19990501)20:5<251::aid-marc251>3.0.co;2-2

Google Scholar

[2] C. Liu, P. T. Mather. Thermomechanical characterization of a tailored series of shape memory polymers. Appl. Med. Polym. 6(2002), 47–52.

Google Scholar

[3] J. S. Leng, et al. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl. Phys. Lett. 92(2008), 204101.

DOI: 10.1063/1.2931049

Google Scholar

[4] J. W. Cho, J. W. Kim, Y. C. Jung, N. S. Goo. Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes. Macromol. Rapid Commun., 26(2005), 412-416.

DOI: 10.1002/marc.200400492

Google Scholar

[5] Y. C. Jung, H. J. Yoo, Y. A. Kim, J. W. Cho, M. Endo. Electroactive Shape Memory Performance of Polyurethane Composite Having Homogeneously Dispersed and Covalently Crosslinked Carbon Nanotubes. Carbon. 48(2010), 1598-1603.

DOI: 10.1016/j.carbon.2009.12.058

Google Scholar

[6] Y. J. Liu, et al. Review of electro-activate shape-memory polymer composite. Compos. Sci. Technol., 69 (2009), 2064-(2068).

Google Scholar

[7] A. Lendlein, H. Y. Jiang, O. Jünger, R. Langer. Light-induced shape-memory polymers. Nature, 434(2005), 879-882.

DOI: 10.1038/nature03496

Google Scholar

[8] W. Small, T. S. Wilson, W. J. Benett, J. M. Loge, D. J. Maitland. Laser-activated shape memory polymer intravascular thrombectomy device. Optics Express, 13 (2005), 8204-8213.

DOI: 10.1364/opex.13.008204

Google Scholar

[9] R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, A. Lendlein. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. PNAS, 103 (2006), 3540-3545.

DOI: 10.1073/pnas.0600079103

Google Scholar

[10] A. M. Schmidt. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol. Rapid Commun. 27(2006), 1168–1172.

DOI: 10.1002/marc.200600225

Google Scholar

[11] B. Yang, W. M. Huang, C. Li, L. Li. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer, 47(2006), 1348-1356.

DOI: 10.1016/j.polymer.2005.12.051

Google Scholar

[12] J. S. Leng, H. B. Lv, Y. J. Liu, S. Y. Du. Shape-memory Polymer in Response to Solution. Adv. Eng. Mater. 10 (2008), 592-595.

DOI: 10.1002/adem.200800002

Google Scholar