Density Functional Theory Study of the Mechanical and Electronic Properties of Rutile TiO2: A Computer Simulation

Article Preview

Abstract:

In this paper, we investigate the structural, electronic and elastic properties of rutile using the ultra-soft pseudo-potential scheme in the framework of density functional theory, together with the generalized gradient approximation. The calculated lattice constants and elastic constants are generally consistent with the other results. Our aim is twofold. First, density functional theory is a fine theory that can obtain reliable results. Second, rutile can be used in the modern industry, thus it should be carefully investigated. The elastic constants dependences on pressure are calculated. It is found that rutile is stable in the pressure range of 020Gpa. The anisotropy of this compound increases with applied pressure. Besides, the analysis of band structure is also given. The calculated band structure shows that rutile belongs to direct-forbidden-gap semiconductors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1955-1958

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.Y. Zhu, Y. Lan, X.P. Gao, S.P. Ringer, Z.F. Zheng, D.Y. Song and J.C. Zhao: J. Am. Chem. Soc. Vol. 127 (2005), p.6730.

Google Scholar

[2] Y.C. Liang, B. Zhang and J.Z. Zhao: Phys. Rev. B Vol. 77 (2008), p.094126.

Google Scholar

[3] L.S. Dubrovinsky, N.A. Dubrovinskaia, V. Swamy, J. Muscat, N.M. Harrison, R. Ahuja, B. Holm and B. Johansson: Nature Vol. 410 (2001), p.653.

DOI: 10.1038/35070650

Google Scholar

[4] J. Muscat, V. Swamy and N.M. Harrison: Phys. Rev. B Vol. 65 (2002), p.224112.

Google Scholar

[5] E. Shojaee, M. Abbasnejad, M. Saeedian and M.R. Mohammadizadeh: Phys. Rev. B Vol. 83 (2011), p.174302.

Google Scholar

[6] J.X. Yu, M. Fu, G.F. Ji and X.R. Chen: Chin. Phys. B Vol. 18 (2009), p.269.

Google Scholar

[7] F. Gervais and W. Kress: Phys. Rev. B Vol. 28 (1983), p.2962.

Google Scholar

[8] V. Swamy and B.C. Muddle: Phys. Rev. Lett. Vol. 98 (2007), p.035502.

Google Scholar

[9] I. Lukačević, S.K. Gupta, P.K. Jha and D. Kirin: Mater. Chem. Phys. Vol. 137 (2012), p.282.

Google Scholar

[10] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

Google Scholar

[11] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[12] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[13] Y.J. Wang, J. Chang, L.N. Tan and X.R. Chen: Chin. Phys. Lett. Vol. 24 (2007), p.2642.

Google Scholar

[14] G. Steinle-Neumann, L. Stixrude and R.E. Cohen: Phys. Rev. B Vol. 60 (1999), p.791.

Google Scholar

[15] J. Zhu, J.X. Yu, Y.J. Wang, X.R. Chen and F.Q. Jing: Chin. Phys. B Vol. 17 (2008), p.2216.

Google Scholar

[16] B. Montanari and N.M. Harrison: Chem. Phys. Lett. Vol. 364 (2002), p.528.

Google Scholar

[17] D.C. Wallace: Thermodynamics of Crystals (Wiley Publications, New York 1972).

Google Scholar

[18] Q. Ru, S.J. Hu and X.L. Qiu: J. South China Normal Univ. Natur. Sci. Ed. Vol. 4 (2009), p.52.

Google Scholar

[19] S.D. Mo and W.Y. Ching: Phys. Rev. B Vol. 51 (1994), p.19.

Google Scholar