A New Approach for Optimal Decomposition Level Selection in Wavelet De-Noising

Article Preview

Abstract:

The paper introduces a novel algorithm to determine the optimal decomposition level in wavelet de-noising. The algorithm selects the optimal decomposition level by comparing the sparsity of wavelet coefficients at adjacent levels. The level whose wavelet coefficient has the maximum sparsity can be confirmed as the optimal decomposition level. We demonstrate experimentally that wavelet de-noising performs better using optimal decomposition level determined by our proposed algorithm than White Noise Test (WNT) method and Maximum Energy (ME) method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

540-545

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Donoho D L: IEEE Transactions on Information Theory. 41(1995), pp.613-627.

Google Scholar

[2] J Z Xiao, Q Song, D W Wang: 14TH IEEE Symposium on Intelligent Control/ Intelligent Systems and Semiotics, ISIC / ISAS'99, USA. ( 1999).

Google Scholar

[3] Box G E P, Jenkins G M, Reinsel G C: Time-series Analysis: Forecasting and Control. Englewood Clifs, NJ, Prentice Hall, Inc (1994).

Google Scholar

[4] Wenliao Du, Rumin Zhu, Yanming Li: Journal of Opto electronics Laser (In Chinese). 9 (2010), pp.1408-1411.

Google Scholar

[5] Peng Chen, Fuqiang Cai, Delai Han: Foreign Electronic Measurement Technology(In Chinese). 31(2012), pp.16-19.

Google Scholar

[6] Qingbo Li, Yupo Xu, Xiang Li, Guangjun Zhang: Journal of Optoelectronics . Laser, 20(2009) , pp.698-701.

Google Scholar

[7] Sun W, Mukherjee R, Stroeve P, et, al: Microelectronic Engineering, 86(2009), pp.340-351.

Google Scholar

[8] Cocchi M, Hidalgo Hidalgo De-Cisneros J L, Naranjo-Rodri gu-ez I, et al: Talanta, 59(2003), pp.735-749.

Google Scholar

[9] D. L. Donoho: Constructive Approximation. 17(2001), p.353–382.

Google Scholar

[10] EJ Candès: Compressive sampling. Madrid, Spain, 3(2006), pp.1433-1452.

Google Scholar

[11] J.S. Picard A.J. Weiss: Signal Processing. 92(2012) , pp.1328-1337.

Google Scholar

[12] Martin Burger; Michael Möller; Martin Benning and Stanley Osher: Math. Comp. 82(2013), pp.269-299.

Google Scholar

[13] F.Y. Wu;F. Tong: Signal Processing. 93(2013), p . 967-971.

Google Scholar

[14] Hurley N and Rickard S: IEEE Transactions on Information Theory. 55(2009), p . 4723-4741.

Google Scholar

[15] Zonoobi, D., Kassim, A. A, and Venkatesh: IEEE Journal of Selected Topics in Signal Processing. 5(2011), p . 927-932.

Google Scholar

[16] S. Rickard and M. Fallon: The Gini index of speech. Conference on Information Sciences and Systems, Princeton, NJ, (2004).

Google Scholar

[17] H. Dalton: Economic Journal, 30(1920), p . 348–361.

Google Scholar

[18] S Mallat, W L Hwang: IEEE Transaction on Inf Theory, 38(l992), p . 617-643.

Google Scholar

[19] physionet. MIT-BIH Arrhythmia Database. (2008) [cited]; Available from: http: /www. physionet. org/physiobank/database/mi.

Google Scholar