[1]
Yang Y., J. Zhang, et al., Topic-conditioned novelty detection, in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining [C]. 2002, ACM: Edmonton, Alberta, Canada. pp.688-693.
DOI: 10.1145/775047.775150
Google Scholar
[2]
Brants T., F. Chen, et al., A System for new event detection, in Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval [C]. 2003, ACM: Toronto, Canada. pp.330-337.
DOI: 10.1145/860435.860495
Google Scholar
[3]
Changli Zhang, Research on Domain-Oriented Public Sentiment Analysis Technology [D]. Jilin University, 2011, PhD: 120.
Google Scholar
[4]
Seymore K., R. Rosenfeld. Large-scale Topic Detection and Language Model Adaptation [R]. (1997).
DOI: 10.21236/ada327553
Google Scholar
[5]
Hubert T. L., H. Jin, et al., The BBN Crosslingual Topic Detection and Tracking System, in In Working Notes of the Third Topic Detection and Tracking Workshop [C]. 2000. pp.894-01.
Google Scholar
[6]
Nallapati R., Semantic language models for topic detection and tracking, in Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology: Proceedings of the HLT-NAACL 2003 student research workshop - Volume 3 [C]. 2003, Association for Computational Linguistics: Edmonton, Canada. pp.1-6.
DOI: 10.3115/1073416.1073417
Google Scholar
[7]
Ruifang H., Q. Bing, et al., Topic Detection and Tracking with Topic Sensitive Language Model, in In International Conference on Mutilingual Information Processing [C]. 2005. pp.324-327.
Google Scholar
[8]
Lee C., G. G. Lee, et al. Dependency structure language model for topic detection and tracking [J]. Inf. Process. Manage., 2007, 43(5): 1249-1259.
DOI: 10.1016/j.ipm.2006.02.007
Google Scholar
[9]
Ha-Thuc V., P. Srinivasan, Topic models and a revisit of text-related applications, in Proceedings of the 2nd PhD workshop on Information and knowledge management [C]. 2008, ACM: Napa Valley, California, USA. pp.25-32.
DOI: 10.1145/1458550.1458556
Google Scholar
[10]
Lin J., R. Snow, et al., Smoothing techniques for adaptive online language models: topic tracking in tweet streams, in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining [C]. 2011, ACM: San Diego, California, USA. pp.422-429.
DOI: 10.1145/2020408.2020476
Google Scholar