[1]
Z. Jorgensen, Y. Zhou, M. Inge, A multiple instance learning strategy for combating good word attacks on spam filters, Journal of Machine Learning Research, vol. 9, n. 1, pp.1115-1146, (2008).
DOI: 10.5772/6068
Google Scholar
[2]
K. Li, Z.Y. Zhong, Fast statistical spam filter by approximate classifications, Proceedings of the Joint International Conference on Measurement and Modelling of Computer Systems (Page: 347-358 Year of Publication: 2006 ISBN: 1-59593-319-0).
DOI: 10.1145/1140277.1140317
Google Scholar
[3]
T. A. Almeida, J. Almeida, A. Yamakami, Spam filtering: how the dimensionality reduction affects the accuracy of Naive Bayes classifiers, Journal of Internet Services and Applications, vol. 1, n. 3, pp.183-200, (2011).
DOI: 10.1007/s13174-010-0014-7
Google Scholar
[4]
Jing Li, Hua Zhang. BTopicMinerE mining and Chinese micro-blog hot topic based on domain-specific [J ] . Computer Application, 2012, 32( 8 ) : 2346—2349. In Chinese.
Google Scholar
[5]
HowNet [R/OL]. HowNet's Home Page. http /www. keenage. com. 2011, 12, 10.
Google Scholar
[6]
Lixing Xie. Research and analysis of SVM Chinese micro-blog based on emotion [D]. Beijing Tsinghua University. 2011. In Chinese.
Google Scholar
[7]
Fabrizio Sebastiani. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 2002, 34(1): 11~12. 32~33.
DOI: 10.1145/505282.505283
Google Scholar
[8]
Mobasher B, Dai H, Luo T, et al. Discovery of aggregate usage profiles for web personalization. in: Proceedings of the WebKDD 2000 workshop at the ACM SIGKDD 2000. Boston, USA: 2000. 142~151.
Google Scholar
[9]
Megerian S, Koushanfar F, Qu G, et al. Exposure in wireless sensor networks: theory and practical solutions. Wireless Networks., 2002, 12(5)443~454.
DOI: 10.1023/a:1016586011473
Google Scholar