Copulas with Given Rational Function Sections

Article Preview

Abstract:

We introduce a construction method with rational function horizontal or vertical sections based on the relationship between copula function and its generator. The copulas formula with fraction linear horizontal (vertical) sections is given. In addition, nonexistence about Archimedean copulas with quadratic rational function horizontal or vertical sections has been proved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2225-2228

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Sklar. Fonctions de repartitionàn dimensions et leurs marges. Publication de l'institut de Statistique de l'universitéde Paris, 1959 (8): 229-231.

Google Scholar

[2] C. Czado. Pair-copula constructions of multivariate Copulas. Copula Theory and Its Applications, 2010, 198(1): 93-109.

DOI: 10.1007/978-3-642-12465-5_4

Google Scholar

[3] M. Hofert. Construction and sampling of nested Archimedean copulas. Copula Theory and Its Applications, 2010, 198(1): 147-160.

DOI: 10.1007/978-3-642-12465-5_7

Google Scholar

[4] C. Alsina, M. J. Frank, B. Schweitzer. Associative Functions: Triangular Norms and Copulas. London: World Scientific Publishing Co, (2006).

DOI: 10.1142/9789812774200

Google Scholar

[5] F. Durante, R. Foschi, P. Sarkoci. Distorted copulas: constructions and tail dependence. Communications in Statistics-theory and Methods, 2010, 39(12): 2288-2301.

DOI: 10.1080/03610920903039506

Google Scholar

[6] E. Liebscher. Construction of asymmetric multivariate copulas. Journal of Multivariate Analysis, 2008, 99(10): 2234–2250.

DOI: 10.1016/j.jmva.2008.02.025

Google Scholar

[7] W. Wlodzimizera. Constructing Archimedean copulas from diagonal sections, Statistics & Probability Letters, 2012, 82(4): 818-826.

DOI: 10.1016/j.spl.2012.01.008

Google Scholar

[8] P. Jaworski. On copulas and their diagonals. Information Sciences, 2009, 179(17): 2863–2871.

DOI: 10.1016/j.ins.2008.09.006

Google Scholar

[9] A. Sancetta, S.E. Satchell. The Bernstein copulas and its applications to modeling and approximations of multivariate distributions. Econometric Theory, 2004, 20(3): 535-562.

DOI: 10.1017/s026646660420305x

Google Scholar