[1]
A. Sklar. Fonctions de repartitionàn dimensions et leurs marges. Publication de l'institut de Statistique de l'universitéde Paris, 1959 (8): 229-231.
Google Scholar
[2]
C. Czado. Pair-copula constructions of multivariate Copulas. Copula Theory and Its Applications, 2010, 198(1): 93-109.
DOI: 10.1007/978-3-642-12465-5_4
Google Scholar
[3]
M. Hofert. Construction and sampling of nested Archimedean copulas. Copula Theory and Its Applications, 2010, 198(1): 147-160.
DOI: 10.1007/978-3-642-12465-5_7
Google Scholar
[4]
C. Alsina, M. J. Frank, B. Schweitzer. Associative Functions: Triangular Norms and Copulas. London: World Scientific Publishing Co, (2006).
DOI: 10.1142/9789812774200
Google Scholar
[5]
F. Durante, R. Foschi, P. Sarkoci. Distorted copulas: constructions and tail dependence. Communications in Statistics-theory and Methods, 2010, 39(12): 2288-2301.
DOI: 10.1080/03610920903039506
Google Scholar
[6]
E. Liebscher. Construction of asymmetric multivariate copulas. Journal of Multivariate Analysis, 2008, 99(10): 2234–2250.
DOI: 10.1016/j.jmva.2008.02.025
Google Scholar
[7]
W. Wlodzimizera. Constructing Archimedean copulas from diagonal sections, Statistics & Probability Letters, 2012, 82(4): 818-826.
DOI: 10.1016/j.spl.2012.01.008
Google Scholar
[8]
P. Jaworski. On copulas and their diagonals. Information Sciences, 2009, 179(17): 2863–2871.
DOI: 10.1016/j.ins.2008.09.006
Google Scholar
[9]
A. Sancetta, S.E. Satchell. The Bernstein copulas and its applications to modeling and approximations of multivariate distributions. Econometric Theory, 2004, 20(3): 535-562.
DOI: 10.1017/s026646660420305x
Google Scholar