[1]
B. Mandelbrot. The Fractal Geometry of Nature, W. H. Freeman and Company, (1983).
Google Scholar
[2]
A. Douady, J. Hubbard, Etude dynamique des polynmes complexes, Prpublications mathmathiquesd' Orsay, 2(4), (1984).
Google Scholar
[3]
K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, (1990).
Google Scholar
[4]
I. Stewart, A. Clarke, The Colours of Infinity: The Beauty and Power of Fractals. Clear Books, (2004).
Google Scholar
[5]
B. Mandelbrot, Fractals and Chaos: The Mandelbrot Set and Beyond, Springer, (2004).
Google Scholar
[6]
K. Mitchell, A statistical investigation of the area of the mandelbrot set, http: /www. fractalus. com/kerry/articles/area/mandelbrot-area. html, (2001).
Google Scholar
[7]
R. Munafo. Pixel counting, http: /www. mrob. com/pub/muency/pixel counting. html, (2003).
Google Scholar
[8]
C. McMullen. Area and hausdorff dimension of julia sets of entire functions, (1987).
Google Scholar
[9]
Shishikura. The boundary of the mandelbrot set hashausdorff dimension two. Astrisque, Vol. 222 (1994), p.389–405.
Google Scholar
[10]
J. Ewing and G. Schober, The area of the mandelbrot set, Numerische Mathematik, Vol. 61 (1992), p.59–72.
DOI: 10.1007/bf01385497
Google Scholar
[11]
W. Ken, Shirriff . An investigation of fractals generated by z -> 1/zn + c . Computers & Graphics - CG , vol. 17, no. 5 (1993), pp.603-607.
DOI: 10.1016/0097-8493(93)90012-x
Google Scholar
[12]
U. G. Gujar, C. Virendra , Bhavsar. Fractals from z <- z alpha + c in the complex c-plane, Computers & Graphics - CG , Vol. 15 (1991), pp.441-449.
DOI: 10.1016/0097-8493(91)90015-a
Google Scholar
[13]
N. Carter, R. Eagles, S. Grimes, et al, Chaotic attractors with discrete planar symmetries , Chaos Solitions and Fractals, Vol. 9 (1998), p.2031- (2054).
DOI: 10.1016/s0960-0779(97)00157-4
Google Scholar