Two Partitioning Algorithms for Generating of M Sets of the Frieze Group

Article Preview

Abstract:

Symmetric features of the frieze group equivalent mappings were analysed, and two partitioning algorithms are given for constructing generalized Mandelbrot sets of frieze group equivalent mappings in order to study the characteristics of generalized Msets. Based on generating parameter space of dynamical system, lots of patterns of generalized Mandelbrot sets are produced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2238-2241

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Mandelbrot. The Fractal Geometry of Nature, W. H. Freeman and Company, (1983).

Google Scholar

[2] A. Douady, J. Hubbard, Etude dynamique des polynmes complexes, Prpublications mathmathiquesd' Orsay, 2(4), (1984).

Google Scholar

[3] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, (1990).

Google Scholar

[4] I. Stewart, A. Clarke, The Colours of Infinity: The Beauty and Power of Fractals. Clear Books, (2004).

Google Scholar

[5] B. Mandelbrot, Fractals and Chaos: The Mandelbrot Set and Beyond, Springer, (2004).

Google Scholar

[6] K. Mitchell, A statistical investigation of the area of the mandelbrot set, http: /www. fractalus. com/kerry/articles/area/mandelbrot-area. html, (2001).

Google Scholar

[7] R. Munafo. Pixel counting, http: /www. mrob. com/pub/muency/pixel counting. html, (2003).

Google Scholar

[8] C. McMullen. Area and hausdorff dimension of julia sets of entire functions, (1987).

Google Scholar

[9] Shishikura. The boundary of the mandelbrot set hashausdorff dimension two. Astrisque, Vol. 222 (1994), p.389–405.

Google Scholar

[10] J. Ewing and G. Schober, The area of the mandelbrot set, Numerische Mathematik, Vol. 61 (1992), p.59–72.

DOI: 10.1007/bf01385497

Google Scholar

[11] W. Ken, Shirriff . An investigation of fractals generated by z -> 1/zn + c . Computers & Graphics - CG , vol. 17, no. 5 (1993), pp.603-607.

DOI: 10.1016/0097-8493(93)90012-x

Google Scholar

[12] U. G. Gujar, C. Virendra , Bhavsar. Fractals from z <- z alpha + c in the complex c-plane, Computers & Graphics - CG , Vol. 15 (1991), pp.441-449.

DOI: 10.1016/0097-8493(91)90015-a

Google Scholar

[13] N. Carter, R. Eagles, S. Grimes, et al, Chaotic attractors with discrete planar symmetries , Chaos Solitions and Fractals, Vol. 9 (1998), p.2031- (2054).

DOI: 10.1016/s0960-0779(97)00157-4

Google Scholar