Frequency Hopping Prediction Based on Multi-Kernel SVM

Article Preview

Abstract:

The chaotic frequency hopping sequences possesses short-term predictability. Via the phase space reconstruction approach, we can get chaos attractors, and the problem of series prediction can be transformed into the regression problem of the chaotic attractors. This paper uses SVR method to deal with the prediction of frequency hopping sequences. After analyzing the characteristics of existing kernel functions, we produce a new multi-kernel function, which is used for the prediction of frequency hopping sequences. Experiments show the fine performances of our methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2256-2260

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.D. Farmer, J.L. Sidorowich: Physical Review Letters, 59, 8, pp.845-848. (1997).

Google Scholar

[2] M. Han in: Prediction Theory and Method of Chaotic Time Series, edited by M. Han, China Water Power Press (2007).

Google Scholar

[3] L. P. Maguire, B. Roche, T. M. Mcginnity: Information Sciences, 112(1998), pp.125-136.

Google Scholar

[4] W. Heng, Y. L. Yang, Y. Y. Zhu: Application Research of Computers, 29(1), pp.237-240. (2012).

Google Scholar

[5] J. L. Dang, J. S. Zhang: Signal Processing, 21, 4A, pp.122-125. (2005).

Google Scholar

[6] S. F. Taken: Lecture Notes in Mathematics, 898(1981), pp.366-381.

Google Scholar

[7] H. Kantz, T. Schreiber in: Nonlinear Time Series Analysis, edited by H. Kantz, T. Schreiber, Cambridge: Cambridge University Press (1997).

Google Scholar

[8] A. M. Fraser, H. L. Swinney: Phys. Rev. A, 33(1986), pp.1134-1140.

Google Scholar

[9] Z. X. Zhou,Y. N. Gao,J. B. Chen: Journal of system simulation, 18, 1, pp.173-175. (2006).

Google Scholar

[10] Z. B. Lu, Z. M. Cai, K. Y. Jiang: Journal of system simulation,19, 11, pp.2527-2530. (2007).

Google Scholar

[11] V. Vapnik. New York: Springer Verlag, (1999).

Google Scholar

[12] G. F. Smits, E. M. Jordan: IEEE Proceeding of IJCNN '02 on Neural Networks, 3(2002), pp.2785-2790.

Google Scholar

[13] Z. M. Yang,G. L. Liu: The Uncertain Support Vector Machine: Algorithms and Applications, edited by F. J. Liu, Science Press Ltd (2012).

Google Scholar