Exponential Decay of Global Solutions for some Quasilinear Higher-Order Wave Equation

Article Preview

Abstract:

In this paper we prove the uniform stabilization of global solutions for some quasilinear higher-order wave equation with linear damping term and source term by applying a lemma due to V.Komornik.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2233-2237

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Benaissa and S.A. Messaoudi, Exponential decay of a nonlinearly damped wave equation, Nonlinear Differ. Equ. Appl., 2005, 12: 391-399.

DOI: 10.1007/s00030-005-0008-5

Google Scholar

[2] V. Georgiev and G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms,J. Diff. Eqns., 1994, 109: 295-308.

DOI: 10.1006/jdeq.1994.1051

Google Scholar

[3] Y.C. Liu and J.S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 2006, 64: 2665-2687.

DOI: 10.1016/j.na.2005.09.011

Google Scholar

[4] L.E. Payne and D.H. Sattinger, saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 1975, 22: 273-303.

DOI: 10.1007/bf02761595

Google Scholar

[5] E. vitiliaro, Global nonexistence theorems for a class of evolution equations, Arch. Rational Mech. Anal., 1968, 30: 148-172.

Google Scholar

[6] M. Nakao, Bounded, periodic and almost periodic classical solutions of some nonlinear wave equations, ACTA Mathematica Sinica, SeriesA, 1978, 30: 375-394.

DOI: 10.2969/jmsj/03030375

Google Scholar

[7] P. Bernner and W. Von Whal, Global classical solutions of nonlinear wave equations, Math. Z., 1981, 176: 87-121.

Google Scholar

[8] H. Pecher, Die existenz regulaer Losungen fur Cauchy-und anfngs-randwert probleme michtlinear wellengleichungen, Math. Z. 1974, 140: 263-279.

DOI: 10.1007/bf01214167

Google Scholar

[9] D.H. sattinger, On global solutions for nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 1968, 30: 148-172.

DOI: 10.1007/bf00250942

Google Scholar

[10] B.X. Wang, Nonlinear scattering theory for a class of wave equation in , J. Math. Anal. Appl., 2004, 296: 74-96.

Google Scholar

[11] C.X. Miao, The time space estimates and scattering at low energy for nonlinear higher order wave equations, ACTA Mathematica Sinica, Series A, 1995, 38: 708-717.

Google Scholar

[12] S.A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 2002, 265: 296-308.

Google Scholar

[13] Y.J. Ye, Existence and asymptotic behavior of global solutions for a class of nonlinear higher –oeder wave equation, 2010, 2010: 1-14. doi: 10. 1155/2010/394859.

DOI: 10.1155/2010/394859

Google Scholar

[14] V. Komornik, Exact controllability and stabilization. The Multiplier Method, Masson-John Wiley, Paris, (1994).

Google Scholar