[1]
D.H. He and X.H. Wang: Attracting and invariant sets of impulsive delay Cohen-Grossberg neural networks [J], Nonlinear Anal. Vol. 6, (2012) pp.705-711
DOI: 10.1016/j.nahs.2011.07.001
Google Scholar
[2]
Z.V. Rekasius: Lagrange stability of nonlinear feedback systems [J], IEEE Trans. Automat. Control., Vol.8, No. 2, (1963) p.160–163
DOI: 10.1109/tac.1963.1105547
Google Scholar
[3]
K.W. Thornton and R.J. Mulholland: Lagrange stability and ecological systems [J], J. Theor. Biol., Vol. 45, (1974) p.473–485
Google Scholar
[4]
K.M. Passino and K.L. Burgess: Lagrange stability and boundedness of discrete event systems [J], Discrete Event Dyn. Syst., Vol. 5, (1995) p.383–403
DOI: 10.1007/bf01439154
Google Scholar
[5]
J.Z. Wang, Z.S. Duan and L. Huang: Control of a class of pendulum-like systems with Lagrange stability [J], Automatica, Vol. 42, (2006) p.145–150
DOI: 10.1016/j.automatica.2005.08.014
Google Scholar
[6]
G.J. Wang, J.D. Cao, L. Wan: Global dissipativity of stochastic neural networks with time delay [J], J. Franklin Inst. Vol. 346 (2009) p.794–807
DOI: 10.1016/j.jfranklin.2009.04.003
Google Scholar
[7]
M.H. Yin, Y. Zou and Y.S. Xue: A class of stability theory based on trajectories and its applications to power systems [J], Control Theory & Applications, Vol. 26, No. 3, Mar 2009, 249- 255. (In Chinese)
Google Scholar
[8]
X.H. Wang, M.H. Jiang and T. Zhang: Lagrange stability and global exponential attractive sets of non-autonomous Cohen-Grossberg neural network with time-varying delays [J], Pure and Applied Mathematics, Vol.26, No.2, Apr. 2010, 275-282. (In Chinese)
DOI: 10.1109/ccdc.2009.5192316
Google Scholar
[9]
X.D. Li and J.H. Shen: LMI approach for stationary oscillation of Interval neural networks with discrete and distributed time-varying delays under impulsive perturbations [J], IEEE trans. Neural Netw., Vol. 21, No. 10, (2010) p.1555–1563
DOI: 10.1109/tnn.2010.2061865
Google Scholar
[10]
B. Boyd, L.E. Ghoui, E. Feron and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory [M], SIAM, Philadelphia, PA, (1994).
Google Scholar
[11]
A. Halanay, Differential Equations: Stability, Oscillations, Time Lags [M], Academic Press, New York, (1966).
Google Scholar