Control Fractional-Order Continuous Chaotic System via a Simple Fractional-Order Controller

Article Preview

Abstract:

A universal fractional-order controller is proposed to asymptotically stable the unstable equilibrium points and the nonequilibrium points of continuous fractional-order chaos systems. The simple fractional-order controller is obtained based on the stability theorem of nonlinear fractional-order systems. The control scheme is simple and theoretically rigorous. The numerical simulations demonstrate the validity and feasibility of the proposed fractional-order controller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

770-773

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. Vol 64(1990), p.821

Google Scholar

[2] G. Chen, X.Yu, Chaos Control: Theory and Applications. Berlin Germany: Springer-Verlag; 2003.

Google Scholar

[3] T.T,Hartley, C. F. Lorenzo, H.K. Qammer,. IEEE Trans CAS-I Vol 42(1995), p.485.

Google Scholar

[4] Z.M. Ge, C.Y.Ou, Chaos Solitons & Fractals Vol34(2007), p.262.

Google Scholar

[5] D. Cafagna, G.Grassi, Nonlinear Dynamics Vol 70(2012), p.1185.

Google Scholar

[6] I. Grigorenko, E.Grigorenko, Phys Rev Lett Vol 91(2003), p.034101.

Google Scholar

[7] C.P. Li, G.J. Peng, Chaos, Solitons & Fractals Vol 22(2004), p.443.

Google Scholar

[8] X.Y. Wang, J. M. Song, Commun. Nonlinear Sci. Numer. Simul. Vol (14) 2009, p.3351.

Google Scholar

[9] L. Pan, W. E. Zhou, Commun. Nonlinear Sci. Numer. Simul. Vol 16 (2011), p.2628.

Google Scholar

[10] S.S. Delshad, M.M. Asheghan, M.H. Beheshti, Commun. Nonlinear Sci. Numer. Simul. Vol 16(2011), p.3815.

Google Scholar

[11] H. Taghvafard, G.H. Erjaee, Commun. Nonlinear Sci. Numer. Simul. Vol 16(2011), p.4079.

Google Scholar

[12] R.X. Zhang, S. P. Yang, Nonlinear Dynamics Vol 66(2011), p.831.

Google Scholar

[13] D. Cafagna, G. Grassi, Nonlinear Dynamics Vol 68(2012), p.117.

Google Scholar

[14] R.X. Zhang, S. P. Yang, Nonlinear Dynamics Vol 68(2012), p.45.

Google Scholar

[15] M. S. Tavazoei, M.Haeri, Phys Lett A Vol 372(2008), p.798.

Google Scholar

[16] P. Zhou, F. Kuang, Discrete Dyn. Nat. Soc. Vol 2011(2011), Article ID 217843.

Google Scholar

[17] P. Zhou, R. Ding, Math. Probl. Eng. Vol 2012(2012), Article ID 214169.

Google Scholar

[18] E. Ahmed, M. A. El-Sayed, H A A El-Saka, J Math. Anal. Appl. Vol 325(2007), p.542.

Google Scholar

[19] P. Zhou, W. Zhu wei, Nonlinear Analysis: Real World Applications Vol 12(2011), p.811.

Google Scholar

[20] P. Zhou, R. Ding, Y.X. Cao, Nonlinear Dynamics Vol 70(2012), p.1263.

Google Scholar