[1]
J. Kameda, R. Ranjan. Nondestructive evaluation of steels using acoustic and magnetic Barkhausen signals-II. Effect of intergranular impurity segregation. Acta Metall, Vol. 35(1987), p.1527.
DOI: 10.1016/0001-6160(87)90097-6
Google Scholar
[2]
Fujita, Akitsugu, Shinohara, Masatomo, Yokota Hiroshi, Kaku Katsuo; Soeda Kihei; Kuroda Yasufumi. Effect of chemical composition and manufacturing procedure on toughness of CrMoV HP rotor forgings. Journal of the Iron and Steel Institute of Japan, Vol. 84(1998), p.236.
DOI: 10.2355/tetsutohagane1955.84.3_236
Google Scholar
[3]
S. M. Bruemmer. Evaluation of chemical and electrochemical etching techniques to determine phosphorus segregation in NiCrMoV rotor steels. Corrosion, Vol. 42(1986), p.180.
DOI: 10.5006/1.3584899
Google Scholar
[4]
R. Viswanathan, S. M. Bruemmer, R. H. Richmann. Etching technique for assessing toughness degradation of in-service components. Journal of engineering materials and technology, Vol. 110 (1988), p.313.
DOI: 10.1115/1.3226055
Google Scholar
[5]
Kwon II-Hyun, Baek Seung-Se, Yu Hyo-Sun. The use of electrochemical and mechanical property correlations to monitor the degradation of Cr-Mo-V turbine casing steel. International Journal of Pressure Vessels and Piping, Vol. 80(2003), p.157.
DOI: 10.1016/s0308-0161(02)00140-0
Google Scholar
[6]
X. Mao and W. Zhao. Electrochemical Polarization Method to Detect Aging Embrittlement of 321 Stainless Steel. Corrosion, Vol. 49(1993), p.335.
DOI: 10.5006/1.3316058
Google Scholar
[7]
Shin-ichi Komazaki, Tetsuo Shoji, Iwao Abe, Ikuo Okada. Nondestructive evaluation of creep damage and life prediction of Ni-base super alloy used in advanced gas turbine blades by electrochemical technique. Ninth International Symposium on Nondestructive Characterization of Materials Shield. Sydney, 1999. 113-119.
DOI: 10.1063/1.1301992
Google Scholar
[8]
Yoshikuni Kadoya, Toru Goto, Mao Takei. Nondestructive Evaluation of Temper Embrittlement in Cr-Mo-V Rotor Steels. JSME International Journal, Vol. 35(1992), p.226.
DOI: 10.1299/jsmea1988.35.2_226
Google Scholar
[9]
Danaher S. , Datta S.; Waddle I. , Hackney P. Erosion modeling using Bayesian regulated artificial neural networks. Wear, Vol. 256(2004, p.879.
DOI: 10.1016/j.wear.2003.08.006
Google Scholar
[10]
Yoo Y.S. , Jo C.Y. , Jones C.N. Compositional prediction of creep rupture life of single crystal Ni base super alloy by Bayesian neural network. Materials Science and Engineering A, Vol. 336 (2002), p.22.
DOI: 10.1016/s0921-5093(01)01965-7
Google Scholar
[11]
Arpad Kelemen, Yulan Liang. Bayesian Regularized Neural Network for Multiple Gene Expression Pattern Classification, Proceedings of the International Joint Conference on Neural Networks, Portland, 2003. 654-659.
DOI: 10.1109/ijcnn.2003.1223441
Google Scholar
[12]
Darrin C. Edwards, Charles E. Metz, Robert M. Nishikawa, Estimation of three-class ideal observer decision functions with a Bayesian artificial neural network, Proceedings of SPIE - The International Society for Optical Engineering, San Diego, 2002. 1-12.
DOI: 10.1117/12.462662
Google Scholar
[13]
Chua C.G. , Goh, A.T.C. , A hybrid Bayesian back-propagation neural network approach to multivariate modeling. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 27(2003), p.651.
DOI: 10.1002/nag.291
Google Scholar