[1]
Chakraborty, J., Synthesis of Mechanical Error in Linkages, Mechanism and Machine Theory, Vol. 10(1975), pp.155-165.
DOI: 10.1016/0094-114x(75)90016-6
Google Scholar
[2]
Baumgarten, J. R., and Fixemer, J. V., Note on a Probabilistic Study Concerning Linkage Tolerances and Coupler Curves, American Society of Mechanical Engineers (Paper), 76 -DET-3(1976).
Google Scholar
[3]
Sukhija, R. P., and Rao, A. C., Synthesis of Path-Generating Mechanism and Tolerance Allocation Using Information Theory, eds., Columbus, OH, USA. (1986).
Google Scholar
[4]
Crawford, R. H., and Rao, S. S., Reliability Analysis of Function Generating Mechanism through Monte Carlo Simulation, S. S. Rao, eds., Boston, MA, USA, Vol. 10 (1987), pp.197-202.
Google Scholar
[5]
Mallik, A. K., and Dhande, S. G., Analysis and Synthesis of Mechanical Error in Path-Generating Linkages Using a Stochastic Approach, Mechanism and Machine Theory, Vol. 22 (1987), pp.115-123.
DOI: 10.1016/0094-114x(87)90034-6
Google Scholar
[6]
Xu, W., and Et Al., Probalistic Analysis and Monte Carlo Simulation of Kinematic Errors in Spatial Linkage, Jixie goneheng Xuebao, Vol. 24(1988), pp.97-104, 89.
Google Scholar
[7]
Wei-Liang, X., and Qi-Xian, Z., Probabilistic Analysis and Monte Carlo Simulation of the Kinematic Error in a Spatial Linkage, Mechanism and Machine Theory, Vol. 24(1989), pp.19-27.
DOI: 10.1016/0094-114x(89)90078-5
Google Scholar
[8]
Shi, Z., Yang, X., Yang, W., and Cheng, Q., Robust Synthesis of Path Generating Linkages, Mechanism and Machine Theory, Vol. 40(2005), pp.45-54.
DOI: 10.1016/j.mechmachtheory.2004.05.008
Google Scholar
[9]
Sun, J., and Lu, Z., General Reliability Analysis for Elastic Linkage Mechanism with Fuzzy and Random Basic Variables, Jixie Qiangdu/Journal of Mechanical Strength, Vol. 27(2005), pp.851-854.
Google Scholar
[10]
Guo, P., and Yan, S., Monte Carlo Simulation of Motion Errors for Four-Bar Linkages with Clearances, Qinghua Daxue Xuebao/Journal of Tsinghua University, Vol. 47(2007), p.1989-(1993).
Google Scholar
[11]
Zhang, Y., Huang, X., Zhang, X., and Lu, C., Optimization Design for Kinematic Accuracy Reliability of Shaping Mechanism under Incomplete Probability Information, Zhongguo Jixie Gongcheng/China Mechanical Engineering, Vol. 19(2008), pp.2355-2358.
Google Scholar
[12]
Zhang, Y., Huang, X., Zhang, X., He, X., and Wen, B., System Reliability Analysis for Kinematic Performance of Planar Mechanism, Chinese Science Bulletin, Vol. 54(2009), pp.2464-2469.
DOI: 10.1007/s11434-009-0054-1
Google Scholar
[13]
Dhande, S. G., and Chakraborty, J., Mechanical Error Analysis of Spatial Linkages, American Society of Mechanical Engineers (Paper), 77 -WA/DE-8, ( 1977).
Google Scholar
[14]
Kim, J., Song, W. -J., and Kang, B. -S., Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism with Dimensional Tolerance, Applied Mathematical Modelling, Vol. 34(2010), pp.1225-1237.
DOI: 10.1016/j.apm.2009.08.009
Google Scholar
[15]
Liu, H., Tang, Y., and Zhang, H. H., A New Chi-Square Approximation to the Distribution of Non-Negative Definite Quadratic Forms in Non-Central Normal Variables, Computational Statistics and Data Analysis, Vol. 53(2009), pp.853-856.
DOI: 10.1016/j.csda.2008.11.025
Google Scholar
[16]
Johnson, N., Kotz, S., and Balakrishnan, N., Continuous Univariate Distributions, Vol. 1 (Wiley Series in Probability and Statistics) Wiley-Interscience. (1994).
DOI: 10.1002/0471715816.scard
Google Scholar
[17]
Imhof, J. P., Computing the Distribution of Quadratic Forms in Normal Variables, Biometrika, Vol. 48(1961), pp.419-426.
DOI: 10.1093/biomet/48.3-4.419
Google Scholar
[18]
Davies, R. B., Algorithm as 155: The Distribution of a Linear Combination of В2В2 Random Variables, Applied Statistics Vol. 29(1980), pp.323-333.
DOI: 10.2307/2346911
Google Scholar
[19]
Kuonen, D., Saddlepoint Approximations for Distributions of Quadratic Forms in Normal Variables, Biometrika, Vol. 86(1999), pp.929-935.
DOI: 10.1093/biomet/86.4.929
Google Scholar