[1]
Vapnik VN. Statistical Learning Theory[M]. New York: Wiley, (1998).
Google Scholar
[2]
Xuegong Zhang. On statistical learning theory and support vector machines [J]. Journal of Automation Technology, 2000, 26(1): 32-46.
Google Scholar
[3]
Jianhua Xu, Xuegong Zhang, Yanda Li. New development of SVM [J]. Control and Decision, 2004, 19(5): 481-484.
Google Scholar
[4]
Joachims T. Text categorization with support vector machines: learning with many relevant features[A]. Proceedings of the European Conference on Machine Learning (ECML)[C]. Chemnitz, Germany: Springer, 1998: 137-142.
DOI: 10.1007/bfb0026683
Google Scholar
[5]
Arun Kumar M, Gopal M. Least squares twin support vector machines for pattern classification[J]. Expert Systems with Applications, 2009, 36(4): 7535-7543.
DOI: 10.1016/j.eswa.2008.09.066
Google Scholar
[6]
Camargo A, Smith JS. Image pattern classification for the identification of disease causing agents in plants[J]. Computers and Electronics in Agriculture, 2009, 66(2): 121-125.
DOI: 10.1016/j.compag.2009.01.003
Google Scholar
[7]
Chandaka S, Chatterjee A, Munshi S. Support vector machines employing cross-correlation for emotional speech recognition[J]. Measurement, 2009, 42(4): 611-618.
DOI: 10.1016/j.measurement.2008.10.005
Google Scholar
[8]
Gao QB, Jin ZC, Ye XF, et al. Prediction of nuclear receptors with optimal pseudo amino acid composition[J]. Analytical Biochemistry, 2009, 387(1): 54-59.
DOI: 10.1016/j.ab.2009.01.018
Google Scholar
[9]
Müller KR, Mika S, Rätsch G, et al. An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201.
Google Scholar
[10]
Chapelle O, Vapnik VN, Bousquet O, et al. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1): 131-159.
Google Scholar