Chaotic Ant Swarm Based Parameter Estimation of Induction Motor from Manufacturer Data

Article Preview

Abstract:

A method of parameter estimation of induction motor based on optimization using a chaotic swarm algorithm is presented. The parameter estimation methodology describes a method for estimating the steady-state equivalent circuit parameters from the motor performance characteristic, which is normally available from manufacturer data or from tests. The optimization problem is formulated as multi-objective function to minimize the error between the estimated and the manufacturer data. Chaotic ant swarm algorithm is a novel optimization method, which has the ability of global optimum search. A numerical simulation on the test motor is conducted. Simulation results show that the proposed method is effective in parameter estimation of the induction motor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1403-1407

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.P. Sakthivel, R. Bhuvaneswari, S. Subramanian, Multi-objective Parameter Estimation of Induction Motor Using Particle Swarm Optimization. Engineering Applications of Artificial Intelligence. 2010; Vol. 23: 302-312.

DOI: 10.1016/j.engappai.2009.06.004

Google Scholar

[2] Nangsue P, Pillay P, Conry S. Evolutionary Algorithms for Induction Motor Parameter Determination. IEEE Transactions Energy Conversion. 1999; Vol. 14: 447-453.

DOI: 10.1109/60.790895

Google Scholar

[3] Orlowska Kowalska, Lis J, Szabat K. Identification of The Induction Motor Parameters Using Soft Computing Methods. Computation and Mathematics in Electrical and Electronics Engineering. 2006; Vol. 25: 181-192.

DOI: 10.1108/03321640610634434

Google Scholar

[4] Rahimpour E, Rashtchi V, Pesaran M. Parameter Identification of Deep-bar Induction Motors Using Genetic Algorithm. Electrical Engineering. 2007; Vol. 89: 547-552.

DOI: 10.1007/s00202-006-0039-x

Google Scholar

[5] Abdelhadi B, Benoudjit A, Nait Said. Identification of Induction Machine Parameters Using an Adaptive Genetic Alogrithm. Electric Power Components And Systems. 2004; Vol. 32: 767-784.

DOI: 10.1080/15325000490466645

Google Scholar

[6] Ursem RK, Vadstrup P. Parameter Identification of Induction Motors Using Differential Evolution. The 2003 Congress on Evolutionary Computation, Canberra, 2003: 790-796.

DOI: 10.1109/cec.2003.1299748

Google Scholar

[7] Fogel DB, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, second IEEE Press, Piscataway, NJ. (2000).

Google Scholar

[8] Li Li-xiang, Peng Hai-peng, Wang Xiang-dong, et al. PID parameter tuning based on chaotic ant swarm, Chinese Journal of Scientific Instrument, 2006; Vol. 27: 1104-1106.

Google Scholar

[9] Li Li-xiang, Yang Yi-xian, Peng Hai-peng, et al. Parameters Identification of Chaotic Systems Via Chaotic Ant Swarm. Chaos, Solitons & Fractals, 2006; Vol. 28: 1204-1211.

DOI: 10.1016/j.chaos.2005.04.110

Google Scholar

[10] Li LX, Peng Hai-peng, Wang Xiang-dong, et al. An optimization method inspired by chaotic, ant behavior. International Journal of Bifurcation and Chaos, 2006; Vol. 16: 2351-2364.

DOI: 10.1142/s0218127406016100

Google Scholar

[11] Li Li-xiang, Peng Hai-peng, Yang Yi-xian, et al. Parameter estimation for Lorenz Chaotic systems based on chaotic ant swarm algorithm, Acta Phys, 2007; Vol. 56: 51-55.

DOI: 10.1049/cp:20062088

Google Scholar

[12] V.P. Sakthivel, R. Bhuvaneswari, S. Subramanian, Bacterial foraging Technique Based Parameter Estimation of Induction Motor from Manufacturer Data, Electric Power Components and Systems, 2010; Vol38: 657-674.

DOI: 10.1080/15325000903489660

Google Scholar