Modeling Constructional Parameters of a Solid Oxide Fuel Cell by Using an Artificial Neural Network

Article Preview

Abstract:

An Artificial Neural Network (ANN) can predict an objects behavior with no algorithmic solution merely by utilizing available experimental data. The error backpropagation algorithm was used for an ANN training procedure. There are SOFC features mainly architectural in nature that cannot be expressed in numerical form or where numerical expression is difficult to obtain, i.e. electrolyte type, anode type, cathode type etc. In those situations a hybrid model (H-ANN) which contains the ANN model and mathematical expressions can be applied. The H-ANN is able to predict cell voltage with knowledge of minimum physical factors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-75

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kotowicz, A. Skorek-Osikowska, . Bartela, Economic and environmental evaluation of selected advanced power generation technologies, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 225 (3) (2011).

DOI: 10.1177/2041296710394280

Google Scholar

[2] G. De Lorenzo, P. Fragiacomo, A methodology for improving the performance of molten carbonate fuel cell/gas turbine hybrid systems, International Journal of Energy Research 36 (1) (2012) 96–110.

DOI: 10.1002/er.1789

Google Scholar

[3] G. De Lorenzo, P. Fragiacomo, Electrical and electrical-thermal power plants with molten carbonate fuel cell/gas turbine-integrated systems, International Journal of Energy Research 36 (2) (2012) 153–165.

DOI: 10.1002/er.1788

Google Scholar

[4] J. Kupecki, K. Badyda, SOFC-based micro-CHP system as an example of efficient power generation unit, Archives of Thermodynamics 32 (3) (2011) 33–43.

DOI: 10.2478/v10173-011-0011-7

Google Scholar

[5] W. Budzianowski, Low-carbon power generation cycles: the feasibility of CO2 capture and opportunities for integration, Journal of Power Technologies 91 (1) (2011) 6–13.

Google Scholar

[6] D. Sánchez, B. Monje, R. Chacartegui, S. Campanari, Potential of molten carbonate fuel cells to enhance the performance of chp plants in sewage treatment facilities, International Journal of Hydrogen Energy 38 (1) (2013) 394–405.

DOI: 10.1016/j.ijhydene.2012.09.145

Google Scholar

[7] D. Bakalis, A. Stamatis, Incorporating available micro gas turbines and fuel cell: Matching considerations and performance evaluation, Applied Energy 103 (2013) 607–617.

DOI: 10.1016/j.apenergy.2012.10.026

Google Scholar

[8] G. Discepoli, G. Cinti, U. Desideri, D. Penchini, S. Proietti, Carbon capture with molten carbonate fuel cells: Experimental tests and fuel cell performance assessment, International Journal of Greenhouse Gas Control 9 (2012) 372–384.

DOI: 10.1016/j.ijggc.2012.05.002

Google Scholar

[9] H. Jeong, S. Cho, D. Kim, H. Pyun, D. Ha, C. Han, M. Kang, M. Jeong, S. Lee, A heuristic method of variable selection based on principal component analysis and factor analysis for monitoring in a 300 kw mcfc power plant, International Journal of Hydrogen Energy 37 (15) (2012).

DOI: 10.1016/j.ijhydene.2012.04.135

Google Scholar

[10] S. Bozorgmehri, M. Hamedi, Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm, Fuel Cells 12 (1) (2012) 11–23.

DOI: 10.1002/fuce.201100140

Google Scholar

[11] H. Marzooghi, M. Raoofat, M. Dehghani, G. Elahi, Dynamic modeling of solid oxide fuel cell stack based on local linear model tree algorithm, International Journal of Hydrogen Energy 37 (5) (2012) 4367–4376.

DOI: 10.1016/j.ijhydene.2011.11.149

Google Scholar

[12] J. Arriagada, P. Olausson, A. Selimovic, Artificial neural network simulator for SOFC performance prediction, Journal of Power Sources 112 (1) (2002) 54–60.

DOI: 10.1016/s0378-7753(02)00314-2

Google Scholar

[13] F. Jurado, Power supply quality improvement with a SOFC plant by neural-network-based control, Journal of Power Sources 117 (1-2) (2003) 75–83.

DOI: 10.1016/s0378-7753(03)00309-4

Google Scholar

[14] H. Huo, X. Zhu, G. Cao, Nonlinear modeling of a SOFC stack based on a least squares support vector machine, Journal of Power Sources 162 (2) (2006) 1220–1225.

DOI: 10.1016/j.jpowsour.2006.07.031

Google Scholar

[15] X. Wu, X. Zhu, G. Cao, H. Tu, Nonlinear modelling of a SOFC stack by improved neural networks identification, Zhejiang University Press 8 (2007) 1505–1509.

DOI: 10.1631/jzus.2007.a1505

Google Scholar

[16] X. Wu, X. Zhu, G. Cao, H. Tu, Modeling a SOFC stack based on ga-rbf neural networks identification, Journal of Power Sources 167 (1) (2007) 145–150.

DOI: 10.1016/j.jpowsour.2007.01.086

Google Scholar

[17] E. Entchev, L. Yang, Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation, Journal of Power Sources 170 (1) (2007).

DOI: 10.1016/j.jpowsour.2007.04.015

Google Scholar

[18] J. Milewski, K. Świrski, Modelling the SOFC behaviours by artificial neural network, International Journal of Hydrogen Energy 34 (13) (2009) 5546–5553.

DOI: 10.1016/j.ijhydene.2009.04.068

Google Scholar

[19] J. Milewski, K. Świrski, M. Santarelli, P. Leone, Advanced Methods of Solid Oxide Fuel Cell Modeling, 1st Edition, Springer-Verlag London Ltd., (2011).

DOI: 10.1007/978-0-85729-262-9

Google Scholar

[20] N. Kishor, S. Mohanty, Fuzzy modeling of fuel cell based on mutual information between variables, International Journal of Hydrogen Energy 35 (8) (2010) 3620–3631.

DOI: 10.1016/j.ijhydene.2010.01.049

Google Scholar

[21] K. Chaichana, Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat, A. Arpornwichanop, Neural network hybrid model of a direct internal reforming solid oxide fuel cell, International Journal of Hydrogen Energy 37 (3) (2012) 2498–2508.

DOI: 10.1016/j.ijhydene.2011.10.051

Google Scholar

[22] D. Grondin, J. Deseure, P. Ozil, J. -P. Chabriat, B. Grondin-Perez, A. Brisse, Solid oxide electrolysis cell 3d simulation using artificial neural network for cathodic process description, Chemical Engineering Research and Design 91 (1) (2013).

DOI: 10.1016/j.cherd.2012.06.003

Google Scholar

[23] H. Demuth, M. Beale, M. Hagan, Neural Network Toolbox 6 User's Guide Matlab.

Google Scholar

[24] F. Foresee, M. Hagan, Gauss-newton approximation to bayesian regularization, in: Proceedings of the 1997 International Joint Conference on Neural Networks, (1997).

DOI: 10.1109/icnn.1997.614194

Google Scholar

[25] J. Milewski, K. Swirski, Hybrid – artificial neural network as solid oxide fuel cell model, in: Hydrogen + Fuel Cells, 2009, p. A00179.

Google Scholar

[26] F. Zhao, A. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, Journal of Power Sources 141 (1) (2005) 79 – 95.

DOI: 10.1016/j.jpowsour.2004.08.057

Google Scholar

[27] Y. Jiang, A. V. Virkar, Fuel composition and diluent effect on gas transport and performance of anode-supported sofcs, Journal of The Electrochemical Society 150 (7) (2003) A942–A951.

DOI: 10.1149/1.1579480

Google Scholar

[28] A. Virkar, L. Wilson, Low-temperature, anode-supported high power density solid oxide fuel cells with nanostructured electrodes, Tech. rep., Department of Energy, USA (2003).

DOI: 10.2172/812922

Google Scholar