Synthesis and Application of Carbon-Based Nanocomposites

Article Preview

Abstract:

Lithium ion batteries have been considered as the most effective and practical technologies for electrochemical energy storage. To meet the demand for lithium ion batteries with high energy density and excellent cycle performance, numerous efforts have been devoted to the development of new electrode materials. Electrochemically active metal oxides have emerged as the most promising candidates for the anode materials in the next generation lithium ion batteries duo to their high theoretical capacities and natural abundance. However, the extremely high volume change induced by the alloying reaction with lithium in the bottleneck for the commercialization of these materials. To overcome these obstacles, carbonaceous materials are commonly introduced as matrices to absorb the volume changes and improve the structural stability of the electrode materials. Hence, the present article describes the synthetic pathway of carbon-coated nanomaterials and applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-175

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. S. Hwang, J. C. Kim, S. D. Seo, S. J. Lee, J. H. Lee and D. W. Kim, Chem. Commun., Vol. 48 (2012), p.7061.

Google Scholar

[2] R. Song, H. H. Song, J. S. Zhou, X. H. Chen, B. Wu and H. Y. Yang, J. Mater. Chem., Vol. 22 (2012), p.12369.

Google Scholar

[3] H. Q. Li and H. S. Zhou, Chem. Commun., Vol. 48 (2012), p.1201.

Google Scholar

[4] X. W. Lou, C. M. Li, and L. A. Archer, Adv. Mater., Vol. 21 (2009), p.2536.

Google Scholar

[5] J. Kim and A. Manthiram, Nature, Vol. 390 (1997), p.265.

Google Scholar

[6] J. M. Tarascon and M. Armand, Nature, Vol. 414 (2001), p.359.

Google Scholar

[7] X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee and L. A. Archer, Adv. Mater., Vol. 18 (2006), p.2325.

Google Scholar

[8] X. W. Lou, C. M. Li and L. A. Archer, Adv. Mater., Vol. 21 (2009), p.2536.

Google Scholar

[9] S. J. Ding, J. S. Chen, G. G. Qi, X. N. Duan, Z. Y. Wang, E. P. Giannelis, L. A. Archer and X. W. Lou, J. Am. Chem. Soc., Vol. 133 (2010), p.21.

Google Scholar

[10] R. Pitchai, V. Thavasi, S. G. Mhaisalkar and S. Ramakrishna, J. Mater. Chem., Vol. 21 (2011), p.11040.

Google Scholar

[11] M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo and I. Honma, ACS Nano Vol. 4 (2010), p.741.

Google Scholar

[12] Y. Yang, C. Xie, R. Ruffo, H. Peng, D. K. Kim and Y. Cui, Nano Lett., Vol. 9 (2009), p.4109.

Google Scholar

[13] S. Lee, Y. Cho, H. Song, K. T. LEE and J. Cho, Angew. Chem. Int. Ed. Vol. 51 (2012), p.8748.

Google Scholar

[14] X. Zhao, C. M. Hayner and H. H. Kung, J. Mater. Chem., Vol. 21 (2011), p.17297.

Google Scholar

[15] K. Chang and W. Chen, J. Mater. Chem., Vol. 21 (2011), p.17175.

Google Scholar

[16] K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang and J. Y. Lee, J. Mater. Chem., Vol. 21 (2011), p.6251.

Google Scholar

[17] Y. S. Hu, R. Demir-Cakan, M. M. Titirici, J. O. Muller, R. Schlogl, M. Antonietti and J. Maier, Angew. Chem. Int. Ed. Vol. 47 (2008), p.1645.

Google Scholar

[18] D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo and L. J. Wan, J. Am. Soc., Vol. 134 (2012), p.2512.

Google Scholar

[19] Y. Z. Su, S. Li, D. Q. Wu, F. Zhang, H. W. Liang, P. F. Gao, C. Cheng and X. L. Feng, ACS Nano Vol. 6 (2012), p.8349.

Google Scholar